Probabilistic Egomotion for Stereo Visual Odometry

We present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle’s angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method’s instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.

[1]  Larry H. Matthies,et al.  Two years of Visual Odometry on the Mars Exploration Rovers , 2007, J. Field Robotics.

[2]  Alexandre Bernardino,et al.  Combining sparse and dense methods in 6D Visual Odometry , 2013, 2013 13th International Conference on Autonomous Robot Systems.

[3]  James R. Bergen,et al.  Visual odometry for ground vehicle applications , 2006, J. Field Robotics.

[4]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[5]  Larry Matthies,et al.  Two years of Visual Odometry on the Mars Exploration Rovers: Field Reports , 2007 .

[6]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[7]  Geoffrey E. Hinton,et al.  Learning Generative Texture Models with extended Fields-of-Experts , 2009, BMVC.

[8]  Andrew Zisserman,et al.  Multiple View Geometry in Computer Vision (2nd ed) , 2003 .

[9]  Francisco Angel Moreno,et al.  An Efficient Closed-Form Solution to Probabilistic 6D Visual Odometry for a Stereo Camera , 2007, ACIVS.

[10]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[11]  Friedrich Fraundorfer,et al.  Visual Odometry Part I: The First 30 Years and Fundamentals , 2022 .

[12]  David Nistér,et al.  An efficient solution to the five-point relative pose problem , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[13]  Frank Dellaert,et al.  Stereo Tracking and Three-Point/One-Point Algorithms - A Robust Approach in Visual Odometry , 2006, 2006 International Conference on Image Processing.

[14]  Andrew Howard,et al.  Real-time stereo visual odometry for autonomous ground vehicles , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Stepán Obdrzálek,et al.  A voting strategy for visual ego-motion from stereo , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[16]  Rachid Deriche,et al.  A Robust Technique for Matching two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry , 1995, Artif. Intell..

[17]  Sanjiv Singh,et al.  Global pose estimation with limited GPS and long range visual odometry , 2012, 2012 IEEE International Conference on Robotics and Automation.

[18]  Brett Browning,et al.  Evaluating Pose Estimation Methods for Stereo Visual Odometry on Robots , 2010 .

[19]  Andreas Geiger,et al.  Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[20]  C. Goodall Procrustes methods in the statistical analysis of shape , 1991 .

[21]  Jing Fang,et al.  A high-efficiency digital image correlation method based on a fast recursive scheme , 2010 .

[22]  Frank Dellaert,et al.  Flow separation for fast and robust stereo odometry , 2009, 2009 IEEE International Conference on Robotics and Automation.

[23]  Larry H. Matthies,et al.  Visual odometry on the Mars Exploration Rovers , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[24]  John J. Craig Zhu,et al.  Introduction to robotics mechanics and control , 1991 .

[25]  Clark F. Olson,et al.  Rover navigation using stereo ego-motion , 2003, Robotics Auton. Syst..

[26]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[27]  Roland Siegwart,et al.  Stereo-Based Ego-Motion Estimation Using Pixel Tracking and Iterative Closest Point , 2006, Fourth IEEE International Conference on Computer Vision Systems (ICVS'06).

[28]  Roland Siegwart,et al.  Robust Real-Time Visual Odometry with a Single Camera and an IMU , 2011, BMVC.

[29]  Yiannis Aloimonos,et al.  A Probabilistic Notion of Correspondence and the Epipolar Constraint , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[30]  Sumetee kesorn Visual Navigation for Mobile Robots: a Survey , 2012 .

[31]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[32]  Patrick Rives,et al.  Real-time Quadrifocal Visual Odometry , 2010, Int. J. Robotics Res..

[33]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[34]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[35]  Roland Siegwart,et al.  Real-time 6D stereo Visual Odometry with non-overlapping fields of view , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.