On the parity ranks of Selmer groups

Assume that p > 3 and that / is ordinary at p, i.e. that ap(f) 6 Fp is a p-adic unit. According to Hida's theory, there is a p-adic family of ordinary modular forms of varying weights containing / (we ignore the phenomenon of "p-stabilization" in this Introduction). In concrete terms, this means that there is an integer c > 0 such that for every integer k > 2 satisfying k = ko (mod (p — l)p), there is an ordinary newform fk of weight k on ro(iV) such that /fc0 = / and . k = k' (mod (p l)p) implies /* = /*' (modp").

[1]  Barry Mazur,et al.  Onp-adic analogues of the conjectures of Birch and Swinnerton-Dyer , 1986 .

[2]  P. Deligne,et al.  Formes modulaires et représentations e -adiques , 1969 .

[3]  W. Bruns,et al.  Cohen-Macaulay rings , 1993 .

[4]  A. Wiles On ordinary λ-adic representations associated to modular forms , 1988 .

[5]  M. Eichler,et al.  Quaternäre quadratische Formen und die Riemannsche Vermutung fÜr die Kongruenzzetafunktion , 1954 .

[6]  Ralph Greenberg,et al.  p-adicL-functions andp-adic periods of modular forms , 1993 .

[7]  Kenneth A. Ribet,et al.  Modular elliptic curves and fermat's last theorem , 1993 .

[8]  Irving Reiner,et al.  Methods of Representation Theory , 1981 .

[9]  Henri Carayol,et al.  Sur les représentations $l$-adiques associées aux formes modulaires de Hilbert , 1986 .

[10]  B. Mazur,et al.  -Adic Monodromy and the Birch and Swinnerton-Dyer Conjecture , 1994 .

[11]  Haruzo Hida,et al.  Iwasawa modules attached to congruences of cusp forms , 1986 .

[12]  A. Grothendieck,et al.  L-Functions and Tamagawa Numbers of Motives , 2022 .

[13]  Li Guo General Selmer Groups and Critical Values of Hecke L-functions , 1993 .

[14]  B. J. Birch,et al.  The parity of the rank of the mordell-weil group , 1966 .

[15]  Benedict H. Gross,et al.  A tameness criterion for Galois representations associated to modular forms $(\mod p)$ , 1990 .

[16]  A. Atkin,et al.  Modular Forms , 2017 .

[17]  J. Tilouine Hecke Algebras and the Gorenstein Property , 1997 .

[18]  Par Goro Shimura Correspondances modulaires et les fonctions ζ de courbes algebriques , 1958 .

[19]  K. Ribet Modp Hecke operators and congruences between modular forms , 1983 .

[20]  A. Wiles,et al.  The Birch and Swinnerton-Dyer Conjecture , 2000 .

[21]  Kenneth A. Ribet,et al.  Galois representations attached to eigenforms with nebentypus , 1977 .

[22]  R. Langlands Modular Forms and ℓ-Adic Representations , 1973 .

[23]  P. Deligne,et al.  Les Schémas de Modules de Courbes Elliptiques , 1973 .