The Electrochemical Behavior of Early Metal Metallocene Cp2MCl2 Complexes under CO2

[1]  Kyle A. Grice,et al.  Electrocatalytic Reduction of CO2 by Group 6 M(CO)6 Species without "Non-Innocent" Ligands. , 2016, Inorganic chemistry.

[2]  F. Sordello,et al.  Electrochemical Reduction of CO2 by M(CO)4(diimine) Complexes (M=Mo, W): Catalytic Activity Improved by 2,2′‐Dipyridylamine , 2015 .

[3]  C. Kubiak,et al.  Reduction of CO2 by Pyridine Monoimine Molybdenum Carbonyl Complexes: Cooperative Metal-Ligand Binding of CO2. , 2015, Chemistry.

[4]  R. Dryfe,et al.  [M(CO)4(2,2?-bipyridine)] (M=Cr, Mo, W) Complexes as Efficient Catalysts for Electrochemical Reduction of CO2 at a Gold Electrode , 2015 .

[5]  M. D. Fryzuk,et al.  Anionic tantalum dihydride complexes: heterobimetallic coupling reactions and reactivity toward small-molecule activation. , 2015, Inorganic chemistry.

[6]  Brian D. McCarthy,et al.  Electrochemical reduction of Brønsted acids by glassy carbon in acetonitrile-implications for electrocatalytic hydrogen evolution. , 2014, Inorganic chemistry.

[7]  S. Grimme,et al.  Substituent effects and supramolecular interactions of titanocene(III) chloride: implications for catalysis in single electron steps. , 2014, Journal of the American Chemical Society.

[8]  Jean-Michel Savéant,et al.  Catalysis of the electrochemical reduction of carbon dioxide. , 2013, Chemical Society reviews.

[9]  Kyle A. Grice,et al.  Manganese as a substitute for rhenium in CO2 reduction catalysts: the importance of acids. , 2013, Inorganic chemistry.

[10]  Chun-Guan Liu Quantum chemical studies on a series of transition metal carbon dioxide complexes: Metal–carbon bonding and electronic structures , 2013 .

[11]  R. López,et al.  A Theoretical Investigation on the Oxidation of Carbon Monoxide by an Aqueous Molybdocene , 2012 .

[12]  F. Molton,et al.  [Mn(bipyridyl)(CO)3Br]: an abundant metal carbonyl complex as efficient electrocatalyst for CO2 reduction. , 2011, Angewandte Chemie.

[13]  R. Webster,et al.  Absorption of water into organic solvents used for electrochemistry under conventional operating conditions. , 2011, Analytical chemistry.

[14]  P. Chirik Group 4 Transition Metal Sandwich Complexes: Still Fresh after Almost 60 Years† , 2010 .

[15]  C. Lamberti,et al.  A Multitechnique Approach to Spin-Flips for Cp2Cr(II) Chemistry in Confined State , 2010 .

[16]  Aaron J. Sathrum,et al.  Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. , 2009, Chemical Society reviews.

[17]  J. Savéant Molecular catalysis of electrochemical reactions. Mechanistic aspects. , 2008, Chemical reviews.

[18]  F. R. van de Voort,et al.  An automated FTIR method for the routine quantitative determination of moisture in lubricants: An alternative to Karl Fischer titration. , 2007, Talanta.

[19]  Michael Bühl,et al.  Geometries of Transition-Metal Complexes from Density-Functional Theory. , 2006, Journal of chemical theory and computation.

[20]  Michael D. Pluth,et al.  Organometallic chemistry in aqueous solution: Reactions catalyzed by water-soluble molybdocenes , 2006 .

[21]  R. Choukroun,et al.  Adventures in Vanadocene Chemistry , 2005 .

[22]  K. Daasbjerg,et al.  Revelation of the nature of the reducing species in titanocene halide-promoted reductions. , 2004, Journal of the American Chemical Society.

[23]  S. Berger,et al.  Characterization of reactive intermediates by diffusion-ordered NMR spectroscopy: a snapshot of the reaction of (13)CO(2) with [Cp(2)Zr(Cl)H]. , 2002, Angewandte Chemie.

[24]  A. W. Addison,et al.  Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C , 2000 .

[25]  I. Fragalà,et al.  Energetics of metal-ligand multiple bonds. A combined solution thermochemical and ab initio quantum chemical study of M=O bonding in group 6 metallocene oxo complexes , 1998 .

[26]  U. Thewalt,et al.  Interaction of carbon dioxide with the bis(trimethylsilyl)acetylene complex of permethyltitanocene: synthesis and structure of the binuclear carbonate complex of permethyltitanocene (Cp2∗Ti)2CO3 , 1996 .

[27]  Z. Klemenkova,et al.  Interaction of carbon dioxide with zirconocene and hafnocene dihydrides , 1996 .

[28]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[29]  K. Nicholas,et al.  Metal formates via oxidation of metal carbonyl hydrides , 1994 .

[30]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[31]  K. Nicholas,et al.  Reactivity of coordinated carbon dioxide: reactions of (C5H5)2Mo(.eta.2-CO2) with electrophiles , 1989 .

[32]  A. Rheingold,et al.  Phosphido derivatives of bis(pentamethylcyclopentadienyl)zirconium and -hafnium complexes and the molecular structure of (.eta.-C5Me5)2Hf(HI)(PHPh) , 1989 .

[33]  V. Strelets The electrochemistry of sandwich and bent sandwich transition metal complexes , 1989 .

[34]  K. Nicholas,et al.  Transition-metal-mediated photochemical disproportionation of carbon dioxide , 1988 .

[35]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[36]  V. Strelets,et al.  Electrochemistry of vanadocene dichloride in tetrahydrofuran and general scheme of the electroreduction of metallocene dichlorides of subgroups IVB-VIB , 1987 .

[37]  C. Floriani,et al.  Stepwise reduction of carbon dioxide to formaldehyde and methanol: reactions of carbon dioxide and carbon dioxide like molecules with hydridochlorobis(cyclopentadienyl)zirconium(IV) , 1985 .

[38]  T. Marks,et al.  Hydrolysis chemistry of the metallocene dichlorides M(.eta.5-C5H5)2Cl2, M = titanium, vanadium, or zirconium. Aqueous kinetics, equilibria, and mechanistic implications for a new class of antitumor agents , 1985 .

[39]  A. Rusina,et al.  Electrochemistry of molybdocene dichloride and tungstocene dichloride and the identification of metastable metallocenes , 1985 .

[40]  C. Floriani,et al.  Carbon dioxide and formaldehyde coordination on molybdenocene to metal and hydrogen bonds of the C1 molecule in the solid state , 1985 .

[41]  M. Curtis,et al.  Carbon-hydrogen activation. Synthesis of silyl derivatives of niobocene and tantalocene hydrides, their H/D exchange reactions with benzene-d6 and the structure of Cp2Ta(H)2SiMe2Ph , 1985 .

[42]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[43]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[44]  A. Haaland Molecular structure and bonding in the 3d metallocenes , 1979 .

[45]  C. Floriani,et al.  Carbon dioxide activation. Deoxygenation and disproportionation of carbon dioxide promoted by bis(cyclopentadienyl)titanium and -zirconium derivatives. A novel bonding mode of the carbonato and a trimer of the zirconyl unit , 1979 .

[46]  D. Lichtenberger,et al.  Nonparameterized molecular orbital calculations and photoelectron spectroscopy of open- and closed-shell M(IV) M(.eta.5-C5H5)2L2 complexes , 1975 .

[47]  L. Guggenberger Crystal structure of the dimer of niobocene, [(C5H5)(C5H5)NbH]2 , 1973 .

[48]  J. Bercaw,et al.  Nature of so-called titanocene, (C10H10Ti)2 , 1970 .

[49]  Kyle A. Grice,et al.  Digital Commons@DePaul Digital Commons@DePaul , 2023 .

[50]  J. Vedel,et al.  Electrochemical and chemical reduction of titanocene dihalides - an ESR study , 1989 .

[51]  J. Ludvík,et al.  Determination of water in acetonitrile, propionitrile, dimethylformamide and tetrahydrofuran by infrared and near-infrared spectrometry , 1988 .

[52]  T. Marks,et al.  Hydrolysis chemistry of the metallocene dichlorides M(η5-C5H5)2Cl2, M=Ti, V, Zr. Aqueous kinetics, equilibria, and mechanistic implications for a new class of antitumor agents , 1985 .

[53]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[54]  P. Hitchcock,et al.  A novel carbon dioxide complex: synthesis and crystal structure of [Nb(η-C5H4Me)2(CH2SiMe3)(η2-CO2)] , 1981 .

[55]  C. Floriani,et al.  Stoicheiometric reduction of CO and CO2 to methanol: evidence for carbon monoxide insertion into zirconium–hydrogen bond , 1978 .

[56]  P. Jeffrey Hay,et al.  Gaussian Basis Sets for Molecular Calculations , 1977 .

[57]  G. Wilkinson Cyclopentadienyl Compounds of Chromium, Molybdenum and Tungsten , 1954 .