Crystal structure of a highly conserved enteroviral 5′ cloverleaf RNA replication element

[1]  Robert C. Edgar,et al.  Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny , 2021, bioRxiv.

[2]  J. Piccirilli,et al.  Structural basis for substrate binding and catalysis by a self-alkylating ribozyme , 2022, Nature Chemical Biology.

[3]  J. Piccirilli,et al.  The SARS-CoV-2 Programmed −1 Ribosomal Frameshifting Element Crystal Structure Solved to 2.09 Å Using Chaperone-Assisted RNA Crystallography , 2021, ACS chemical biology.

[4]  Claes Ohlsson,et al.  Issue Information , 2020 .

[5]  B. Semler,et al.  Structure of the PCBP2/stem–loop IV complex underlying translation initiation mediated by the poliovirus type I IRES , 2020, Nucleic acids research.

[6]  J. Piccirilli,et al.  Crystalizing Structured RNAs Using a Surface‐Entropy‐Reduced Fab as a Crystallization Chaperone , 2020, The FASEB Journal.

[7]  Ravindranath Garimella,et al.  Structural Biology of the Enterovirus Replication-Linked 5′-Cloverleaf RNA and Associated Virus Proteins , 2020, Microbiology and Molecular Biology Reviews.

[8]  A. Kotar,et al.  Advanced approaches for elucidating structures of large RNAs using NMR spectroscopy and complementary methods. , 2020, Methods.

[9]  W. Tapprich,et al.  Structure of the 5′ Untranslated Region of Enteroviral Genomic RNA , 2019, Journal of Virology.

[10]  Bruce A. Johnson,et al.  Assigning NMR spectra of RNA, peptides and small organic molecules using molecular network visualization software , 2019, Journal of Biomolecular NMR.

[11]  H. Köstler,et al.  Improving the sensitivity of FT-NMR spectroscopy by apodization weighted sampling , 2019, Journal of biomolecular NMR.

[12]  Gabriel Cornilescu,et al.  Conformational flexibility in the enterovirus RNA replication platform , 2018, RNA.

[13]  J. Kieft,et al.  Viral RNA structure-based strategies to manipulate translation , 2018, Nature Reviews Microbiology.

[14]  J. Piccirilli,et al.  Structural basis for activation of fluorogenic dyes by an RNA aptamer lacking a G-quadruplex motif , 2018, Nature Communications.

[15]  J. Piccirilli,et al.  Structural basis for activation of fluorogenic dyes by an RNA aptamer lacking a G-quadruplex motif , 2018, Nature Communications.

[16]  S. Benner,et al.  Affinity maturation of a portable Fab–RNA module for chaperone-assisted RNA crystallography , 2018, Nucleic acids research.

[17]  Jens Meiler,et al.  Web‐accessible molecular modeling with Rosetta: The Rosetta Online Server that Includes Everyone (ROSIE) , 2018, Protein science : a publication of the Protein Society.

[18]  Robert D. Finn,et al.  Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families , 2017, Nucleic Acids Res..

[19]  Gabriel Cornilescu,et al.  Structure of RNA Stem Loop B from the Picornavirus Replication Platform. , 2017, Biochemistry.

[20]  S. Eddy,et al.  A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs , 2016, Nature Methods.

[21]  D. Walsh,et al.  A Cap-to-Tail Guide to mRNA Translation Strategies in Virus-Infected Cells. , 2016, Annual review of virology.

[22]  J. Reader,et al.  Structural characterization of antibiotic self-immunity tRNA synthetase in plant tumour biocontrol agent , 2016, Nature Communications.

[23]  Bruce A. Johnson,et al.  NMRFx Processor: a cross-platform NMR data processing program , 2016, Journal of Biomolecular NMR.

[24]  C. Tapparel,et al.  Rhinoviruses and Respiratory Enteroviruses: Not as Simple as ABC , 2016, Viruses.

[25]  Bruce A. Johnson,et al.  Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression , 2015, Journal of Biomolecular NMR.

[26]  David A. Case,et al.  Structure of the HIV-1 RNA packaging signal , 2015, Science.

[27]  John J. Evans,et al.  Major alteration in coxsackievirus B3 genomic RNA structure distinguishes a virulent strain from an avirulent strain , 2014, Nucleic acids research.

[28]  J. Piccirilli,et al.  A G-Quadruplex-Containing RNA Activates Fluorescence in a GFP-Like Fluorophore , 2014, Nature chemical biology.

[29]  D. Rio Expression and purification of active recombinant T7 RNA polymerase from E. coli. , 2013, Cold Spring Harbor protocols.

[30]  A. Koide,et al.  Generating conformation-specific synthetic antibodies to trap proteins in selected functional states. , 2013, Methods.

[31]  Tom J. Petty,et al.  Picornavirus and enterovirus diversity with associated human diseases. , 2013, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[32]  Brian D. Weitzner,et al.  Serverification of Molecular Modeling Applications: The Rosetta Online Server That Includes Everyone (ROSIE) , 2013, PloS one.

[33]  Bruce A. Johnson,et al.  Database proton NMR chemical shifts for RNA signal assignment and validation , 2012, Journal of biomolecular NMR.

[34]  Daniel Lai,et al.  R-chie: a web server and R package for visualizing RNA secondary structures , 2012, Nucleic acids research.

[35]  Pamela L. Vanegas,et al.  RNA CoSSMos: Characterization of Secondary Structure Motifs—a searchable database of secondary structure motifs in RNA three-dimensional structures , 2011, Nucleic Acids Res..

[36]  D. Bartel,et al.  A portable RNA sequence whose recognition by a synthetic antibody facilitates structural determination , 2010, Nature Structural &Molecular Biology.

[37]  D. Case,et al.  Major groove width variations in RNA structures determined by NMR and impact of 13C residual chemical shift anisotropy and 1H–13C residual dipolar coupling on refinement , 2010, Journal of biomolecular NMR.

[38]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[39]  D. Baker,et al.  Atomic accuracy in predicting and designing non-canonical RNA structure , 2010, Nature Methods.

[40]  B. Semler,et al.  Mechanistic Consequences of hnRNP C Binding to Both RNA Termini of Poliovirus Negative-Strand RNA Intermediates , 2010, Journal of Virology.

[41]  R. Jackson,et al.  The mechanism of eukaryotic translation initiation and principles of its regulation , 2010, Nature Reviews Molecular Cell Biology.

[42]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[43]  Nidhi Sharma,et al.  Functional role of the 5' terminal cloverleaf in Coxsackievirus RNA replication. , 2009, Virology.

[44]  M. Hsu,et al.  Structural Basis of Inhibition Specificities of 3C and 3C-like Proteases by Zinc-coordinating and Peptidomimetic Compounds , 2009, Journal of Biological Chemistry.

[45]  D. Barton,et al.  Cis-active RNA elements (CREs) and picornavirus RNA replication. , 2009, Virus research.

[46]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[47]  E. Zdobnov,et al.  The cis-acting replication elements define human enterovirus and rhinovirus species. , 2008, RNA.

[48]  Nidhi Sharma,et al.  Protein-RNA tethering: the role of poly(C) binding protein 2 in poliovirus RNA replication. , 2008, Virology.

[49]  Matthias Görlach,et al.  Poly(rC)-binding protein 2 interacts with the oligo(rC) tract of coxsackievirus B3. , 2008, Biochemical and biophysical research communications.

[50]  Frederic A. Fellouse,et al.  Synthetic antibodies for specific recognition and crystallization of structured RNA , 2008, Proceedings of the National Academy of Sciences.

[51]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[52]  A. Paul,et al.  Replication of Poliovirus Requires Binding of the Poly(rC) Binding Protein to the Cloverleaf as Well as to the Adjacent C-Rich Spacer Sequence between the Cloverleaf and the Internal Ribosomal Entry Site , 2007, Journal of Virology.

[53]  K. Dutta,et al.  NMR structure of stem-loop D from human rhinovirus-14. , 2007, RNA.

[54]  J. Bailey,et al.  Structure of the 5′ Nontranslated Region of the Coxsackievirus B3 Genome:Chemical Modification and Comparative Sequence Analysis , 2006, Journal of Virology.

[55]  G. Palacios,et al.  Enteroviruses as agents of emerging infectious diseases , 2005, Journal of NeuroVirology.

[56]  B. Semler,et al.  An Authentic 3′ Noncoding Region Is Necessary for Efficient Poliovirus Replication , 2005, Journal of Virology.

[57]  B. Semler,et al.  Functional Interaction of Heterogeneous Nuclear Ribonucleoprotein C with Poliovirus RNA Synthesis Initiation Complexes , 2005, Journal of Virology.

[58]  R. Andino,et al.  Solution structure of a consensus stem-loop D RNA domain that plays important roles in regulating translation and replication in enteroviruses and rhinoviruses. , 2004, Biochemistry.

[59]  M. Pallansch,et al.  Complete genome sequences of all members of the species Human enterovirus A. , 2004, The Journal of general virology.

[60]  S. Watowich,et al.  Genetic Evidence for an Interaction between a Picornaviral cis-Acting RNA Replication Element and 3CD Protein* , 2004, Journal of Biological Chemistry.

[61]  J. Wöhnert,et al.  The structure of the stemloop D subdomain of coxsackievirus B3 cloverleaf RNA and its interaction with the proteinase 3C. , 2004, Structure.

[62]  Nidhi Sharma,et al.  Poliovirus cre(2C)-Dependent Synthesis of VPgpUpU Is Required for Positive- but Not Negative-Strand RNA Synthesis , 2003, Journal of Virology.

[63]  R. Andino,et al.  Extending the family of UNCG-like tetraloop motifs: NMR structure of a CACG tetraloop from coxsackievirus B3. , 2003, Biochemistry.

[64]  D. Barton,et al.  Poliovirus CRE-Dependent VPg Uridylylation Is Required for Positive-Strand RNA Synthesis but Not for Negative-Strand RNA Synthesis , 2003, Journal of Virology.

[65]  B. Semler,et al.  Distinct Poly(rC) Binding Protein KH Domain Determinants for Poliovirus Translation Initiation and Viral RNA Replication , 2002, Journal of Virology.

[66]  R. Zell,et al.  Determinants of the recognition of enteroviral cloverleaf RNA by coxsackievirus B3 proteinase 3C. , 2002, RNA.

[67]  J. Flanegan,et al.  5′ cloverleaf in poliovirus RNA is a cis‐acting replication element required for negative‐strand synthesis , 2001, The EMBO journal.

[68]  R. Andino,et al.  Poliovirus RNA Replication Requires Genome Circularization through a Protein–Protein Bridge , 2001, Molecular Cell.

[69]  S. Rüdisser,et al.  A simple and efficient method to transcribe RNAs with reduced 3' heterogeneity. , 2001, Methods.

[70]  W. Tsai,et al.  Interaction of poliovirus-encoded 2C/2BC polypeptides with the 3' terminus negative-strand cloverleaf requires an intact stem-loop b. , 2001, Virology.

[71]  A. Paul,et al.  Genetic and Biochemical Studies of Polioviruscis-Acting Replication Element cre in Relation to VPg Uridylylation , 2000, Journal of Virology.

[72]  J. Meredith,et al.  Identification of a cis-Acting Replication Element within the Poliovirus Coding Region , 2000, Journal of Virology.

[73]  R. Andino,et al.  Interactions of Viral Protein 3CD and Poly(rC) Binding Protein with the 5′ Untranslated Region of the Poliovirus Genome , 2000, Journal of Virology.

[74]  J. Meredith,et al.  Similar Interactions of the Poliovirus and Rhinovirus 3D Polymerases with the 3′ Untranslated Region of Rhinovirus 14 , 1999, Journal of Virology.

[75]  A. Ferré-D’Amaré,et al.  A general module for RNA crystallization. , 1998, Journal of molecular biology.

[76]  A. Dasgupta,et al.  Poliovirus-encoded 2C polypeptide specifically binds to the 3'-terminal sequences of viral negative-strand RNA , 1997, Journal of virology.

[77]  B. Semler,et al.  Poly (rC) binding protein 2 forms a ternary complex with the 5'-terminal sequences of poliovirus RNA and the viral 3CD proteinase. , 1997, RNA.

[78]  M. Pallansch,et al.  Complete nucleotide sequence of enterovirus 71 is distinct from poliovirus. , 1995, Virus research.

[79]  E. Wimmer,et al.  Interaction between the 5'-terminal cloverleaf and 3AB/3CDpro of poliovirus is essential for RNA replication , 1995, Journal of virology.

[80]  B. Semler,et al.  Poliovirus infection enhances the formation of two ribonucleoprotein complexes at the 3' end of viral negative-strand RNA , 1995, Journal of virology.

[81]  Bruce A. Johnson,et al.  NMR View: A computer program for the visualization and analysis of NMR data , 1994, Journal of biomolecular NMR.

[82]  R. Ley,et al.  The 5'-untranslated regions of picornavirus RNAs contain independent functional domains essential for RNA replication and translation , 1994, Journal of virology.

[83]  R. Andino,et al.  Poliovirus RNA synthesis utilizes an RNP complex formed around the 5′‐end of viral RNA. , 1993, The EMBO journal.

[84]  R. Andino,et al.  A functional ribonucleoprotein complex forms around the 5′ end of poliovirus RNA , 1990, Cell.

[85]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[86]  B. Semler,et al.  Primary structure, gene organization and polypeptide expression of poliovirus RNA , 1981, Nature.

[87]  OUP accepted manuscript , 2021, Nucleic Acids Research.

[88]  M. Dutkiewicz,et al.  Structure and function of RNA elements present in enteroviral genomes. , 2016, Acta biochimica Polonica.

[89]  C. Cameron,et al.  Structural and functional characterization of the coxsackievirus B3 CRE(2C): role of CRE(2C) in negative- and positive-strand RNA synthesis. , 2006, The Journal of general virology.

[90]  H. Rotbart Human enterovirus infections. , 1995 .

[91]  B. Semler,et al.  Defined recombinants of poliovirus and coxsackievirus: sequence-specific deletions and functional substitutions in the 5'-noncoding regions of viral RNAs. , 1988, Virology.