An Anisotropic Error Indicator Based on Zienkiewicz-Zhu Error Estimator: Application to Elliptic and Parabolic Problems

The anisotropic error indicator presented in [M. Picasso, Comm. Numer. Methods Engrg., 19 (2003), pp. 13--23.] in the frame of the Laplace equation is extended to elliptic and parabolic problems. Our error indicator is derived using the anisotropic interpolation estimates of [L. Formaggia and S. Perotto, Numer. Math., 89 (2001), pp. 641--667; L. Formaggia and S. Perotto, Numer. Math., (2002), DOI 10.1007/s002110200415], together with a Zienkiewicz--Zhu error estimator to approach the error gradient. A numerical study of the effectivity index is proposed for elliptic, diffusion-convection, and parabolic problems. An adaptive algorithm is implemented, aimed at controlling the relative estimated error.

[1]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[2]  J. Tiaden,et al.  Phase field simulations of the peritectic solidification of Fe–C , 1999 .

[3]  Houman Borouchaki,et al.  The BL2D Mesh Generator: Beginner's Guide, User's and Programmer's Manual , 1996 .

[4]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[5]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[6]  O. Zienkiewicz,et al.  Analysis of the Zienkiewicz–Zhu a‐posteriori error estimator in the finite element method , 1989 .

[7]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[8]  Marco Picasso,et al.  An adaptive finite element algorithm for a two-dimensional stationary Stefan-like problem , 1995 .

[9]  M. Picasso Adaptive finite elements for a linear parabolic problem , 1998 .

[10]  Gerd Kunert A posteriori error estimation for convection dominated problems on anisotropic meshes , 2003 .

[11]  David Kay,et al.  The reliability of local error estimators for convection–diffusion equations , 2001 .

[12]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[13]  Finite element approximation for a div-rot system with mixed boundary conditions in non-smooth plane domains , 1984 .

[14]  Gerd Kunert A posteriori L2 error estimation on anisotropic tetrahedral finite element meshes , 2001 .

[15]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[16]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[17]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[18]  Gert Lube,et al.  Stabilized Galerkin methods and layer-adapted grids for elliptic problems , 1998 .

[19]  Ricardo H. Nochetto,et al.  AN ADAPTIVE FINITE ELEMENT METHOD FOR TWO-PHASE STEFAN PROBLEMS IN TWO SPACE DIMENSIONS. PART I: STABILITY AND ERROR ESTIMATES , 1991 .

[20]  G. Caginalp,et al.  Phase-field and sharp-interface alloy models. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Kunibert G. Siebert,et al.  An a posteriori error estimator for anisotropic refinement , 1996 .

[22]  Michel Fortin,et al.  A directionally adaptive methodology using an edge-based error estimate on quadrilateral grids , 1996 .

[23]  I. Babuska,et al.  A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles , 1994 .

[24]  Ivo Babuška,et al.  Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements , 1992 .

[25]  M. Picasso Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz–Zhu error estimator , 2002 .

[26]  Michel Fortin,et al.  Anisotropic Mesh Adaptation: A Step Towards a Mesh-Independent and User-Independent CFD , 1998 .

[27]  Simona Perotto,et al.  Stabilized Finite Elements on Anisotropic Meshes: A Priori Error Estimates for the Advection-Diffusion and the Stokes Problems , 2003, SIAM J. Numer. Anal..

[28]  J. Baranger,et al.  Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-newtoniens , 1991 .

[29]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.

[30]  T. Hughes,et al.  Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .

[31]  A. Visintin Models of Phase Transitions , 1996 .

[32]  Jacques Rappaz,et al.  Error estimates and adaptive finite elements for nonlinear diffusion-convection problems , 1996 .

[33]  L. Franca,et al.  Stabilized Finite Element Methods , 1993 .

[34]  J. Tinsley Oden,et al.  A Posteriori Error Estimation , 2002 .

[35]  Simona Perotto,et al.  New anisotropic a priori error estimates , 2001, Numerische Mathematik.

[36]  B E.,et al.  Anisotropic , adaptive finite elements for the computation of a solutal dendrite , 2003 .

[37]  R. Rodríguez Some remarks on Zienkiewicz‐Zhu estimator , 1994 .

[38]  Erik Burman,et al.  Existence of solutions to an anisotropic phase‐field model , 2003 .

[39]  Simona Perotto,et al.  Anisotropic error estimates for elliptic problems , 2003, Numerische Mathematik.

[40]  Ricardo H. Nochetto,et al.  An Adaptive Finite Element Method for Two-Phase Stefan Problems in Two Space Dimensions. II: Implementation and Numerical Experiments , 1991, SIAM J. Sci. Comput..

[41]  J. Warren,et al.  Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method , 1995 .