A divide and conquer real-space approach for all-electron molecular electrostatic potentials and interaction energies.

A computational scheme to perform accurate numerical calculations of electrostatic potentials and interaction energies for molecular systems has been developed and implemented. Molecular electron and energy densities are divided into overlapping atom-centered atomic contributions and a three-dimensional molecular remainder. The steep nuclear cusps are included in the atom-centered functions making the three-dimensional remainder smooth enough to be accurately represented with a tractable amount of grid points. The one-dimensional radial functions of the atom-centered contributions as well as the three-dimensional remainder are expanded using finite element functions. The electrostatic potential is calculated by integrating the Coulomb potential for each separate density contribution, using our tensorial finite element method for the three-dimensional remainder. We also provide algorithms to compute accurate electron-electron and electron-nuclear interactions numerically using the proposed partitioning. The methods have been tested on all-electron densities of 18 reasonable large molecules containing elements up to Zn. The accuracy of the calculated Coulomb interaction energies is in the range of 10(-3) to 10(-6) E(h) when using an equidistant grid with a step length of 0.05 a(0).

[1]  Jun Fang,et al.  A Kohn-Sham equation solver based on hexahedral finite elements , 2012, J. Comput. Phys..

[2]  K. Schwarz,et al.  Electronic structure calculations of solids using the WIEN2k package for material sciences , 2002 .

[3]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[4]  G. Beylkin,et al.  Multiresolution quantum chemistry in multiwavelet bases: Analytic derivatives for Hartree-Fock and density functional theory. , 2004, The Journal of chemical physics.

[5]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[6]  P. Pyykkö,et al.  Two‐Dimensional fully numerical solutions of molecular Schrödinger equations. II. Solution of the Poisson equation and results for singlet states of H2 and HeH+ , 1983 .

[7]  H. Appel,et al.  octopus: a tool for the application of time‐dependent density functional theory , 2006 .

[8]  D. Sundholm,et al.  Universal method for computation of electrostatic potentials. , 2005, The Journal of chemical physics.

[9]  Dage Sundholm,et al.  Parallel implementation of a direct method for calculating electrostatic potentials. , 2007, The Journal of chemical physics.

[10]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .

[11]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[12]  A. Roy Pseudopotential density functional treatment of atoms and molecules in cartesian coordinate grid , 2008, 1002.2824.

[13]  Reinhold Schneider,et al.  Daubechies wavelets as a basis set for density functional pseudopotential calculations. , 2008, The Journal of chemical physics.

[14]  Evert Jan Baerends,et al.  Towards an order , 1998 .

[15]  J. Olsen,et al.  Large multiconfiguration Hartree-Fock calculations on the hyperfine structure of B(2P) and the nuclear quadrupole moments of 10B and 11B , 1991 .

[16]  James R. Chelikowsky,et al.  Real-space pseudopotential method for first principles calculations of general periodic and partially periodic systems , 2008 .

[17]  Martin Head-Gordon,et al.  Derivation and efficient implementation of the fast multipole method , 1994 .

[18]  E. A. McCullough,et al.  The partial-wave self-consistent-field method for diatomic molecules: Computational formalism and results for small molecules , 1975 .

[19]  Leif Laaksonen,et al.  A Numerical Hartree-Fock Program for Diatomic Molecules , 1996 .

[20]  A. Becke,et al.  Numerical solution of Poisson’s equation in polyatomic molecules , 1988 .

[21]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[22]  Michele Parrinello,et al.  A hybrid Gaussian and plane wave density functional scheme , 1997 .

[23]  Robert J. Harrison,et al.  Singular operators in multiwavelet bases , 2004, IBM J. Res. Dev..

[24]  R Alizadegan,et al.  A divide and conquer real space finite-element Hartree-Fock method. , 2010, The Journal of chemical physics.

[25]  P. Pyykkö,et al.  Two‐dimensional fully numerical solutions of molecular Schrödinger equations. I. One‐electron molecules , 1983 .

[26]  Kimihiko Hirao,et al.  A linear-scaling spectral-element method for computing electrostatic potentials. , 2008, The Journal of chemical physics.

[27]  P. Čárský,et al.  Efficient evaluation of Coulomb integrals in a mixed Gaussian and plane-wave basis , 2007 .

[28]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[29]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[30]  E. A. Mccullough Seminumerical SCF calculations on small diatomic molecules , 1974 .

[31]  Gregory Beylkin,et al.  Multiresolution quantum chemistry in multiwavelet bases: Hartree-Fock exchange. , 2004, The Journal of chemical physics.

[32]  Kimihiko Hirao,et al.  Linear-scaling multipole-accelerated Gaussian and finite-element Coulomb method. , 2008, The Journal of chemical physics.

[33]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[34]  Jon Baker,et al.  Accuracy and efficiency of atomic basis set methods versus plane wave calculations with ultrasoft pseudopotentials for DNA base molecules , 2005, J. Comput. Chem..

[35]  Axel D. Becke,et al.  Numerical solution of Schrödinger’s equation in polyatomic molecules , 1990 .

[36]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[37]  S. A. Losilla,et al.  The direct approach to gravitation and electrostatics method for periodic systems. , 2010, The Journal of chemical physics.

[38]  T. Torsti,et al.  Three real‐space discretization techniques in electronic structure calculations , 2006 .

[39]  Kimihiko Hirao,et al.  Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals. , 2007, The Journal of chemical physics.

[40]  Evert Jan Baerends,et al.  Numerical integration for polyatomic systems , 1992 .

[41]  Gregory Beylkin,et al.  Multiresolution quantum chemistry: basic theory and initial applications. , 2004, The Journal of chemical physics.

[42]  P. Pyykkö,et al.  Two-dimensional, fully numerical molecular calculations: VIII. Electric field gradients of diatomic hydrides LiH-ClH at the HFS level , 1985 .

[43]  Edward F. Valeev,et al.  Low-order tensor approximations for electronic wave functions: Hartree-Fock method with guaranteed precision. , 2011, The Journal of chemical physics.

[44]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[45]  S. F. Boys Electronic wave functions - I. A general method of calculation for the stationary states of any molecular system , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[46]  J. C. Slater Atomic Shielding Constants , 1930 .

[47]  Friedhelm Bechstedt,et al.  Ground‐ and excited‐state properties of DNA base molecules from plane‐wave calculations using ultrasoft pseudopotentials , 2004, J. Comput. Chem..

[48]  Hans-Jörg Limbach,et al.  ESPResSo - an extensible simulation package for research on soft matter systems , 2006, Comput. Phys. Commun..