Quantum mechanical effects in plasmonic structures with subnanometre gaps

Metallic structures with nanogap features have proven highly effective as building blocks for plasmonic systems, as they can provide a wide tuning range of operating frequencies and large near-field enhancements. Recent work has shown that quantum mechanical effects such as electron tunnelling and nonlocal screening become important as the gap distances approach the subnanometre length-scale. Such quantum effects challenge the classical picture of nanogap plasmons and have stimulated a number of theoretical and experimental studies. This review outlines the findings of many groups into quantum mechanical effects in nanogap plasmons, and discusses outstanding challenges and future directions.

[1]  V. A. Apkarian,et al.  Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse. , 2012, ACS nano.

[2]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[3]  Thomas R Huser,et al.  Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates. , 2005, Nano letters.

[4]  Martijn Wubs,et al.  Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response. , 2011, Optics express.

[5]  K. Meiwes-Broer,et al.  Blue shift of the Mie plasma frequency in Ag clusters and particles. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[6]  Guang-Yu Guo,et al.  Plasmonic excitations in quantum-sized sodium nanoparticles studied by time-dependent density functional calculations , 2013, 1307.3631.

[7]  L. Liz‐Marzán,et al.  Mapping surface plasmons on a single metallic nanoparticle , 2007 .

[8]  H. Atwater,et al.  Photonic design principles for ultrahigh-efficiency photovoltaics. , 2012, Nature materials.

[9]  Stefan A. Maier,et al.  Quantum Plasmonics , 2016, Proceedings of the IEEE.

[10]  A. Nitzan,et al.  Molecular optoelectronics: the interaction of molecular conduction junctions with light. , 2012, Physical chemistry chemical physics : PCCP.

[11]  H. Chu,et al.  On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions , 2016, Nature Photonics.

[12]  J. Cuevas,et al.  Plasmon-Induced Conductance Enhancement in Single-Molecule Junctions , 2013 .

[13]  A. Borisov,et al.  Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. , 2012, Nano letters.

[14]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[15]  P. Nordlander,et al.  Quantum plasmonics: optical properties of a nanomatryushka. , 2013, Nano letters.

[16]  Hongxing Xu,et al.  Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics , 2014, Nature Communications.

[17]  Kan Yao,et al.  Generalized laws of reflection and refraction from transformation optics , 2012, 1202.5829.

[18]  H. Duan,et al.  Resolution limits of electron-beam lithography toward the atomic scale. , 2013, Nano letters (Print).

[19]  Liebsch,et al.  Influence of a polarizable medium on the nonlocal optical response of a metal surface. , 1995, Physical review. B, Condensed matter.

[20]  George C Schatz,et al.  Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. , 2010, Journal of the American Chemical Society.

[21]  Scattering theory of photon-assisted electron transport , 1998, cond-mat/9803306.

[22]  F. D. Abajo,et al.  Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.

[23]  Angel Rubio,et al.  Ab initio nanoplasmonics: The impact of atomic structure , 2014 .

[24]  Marc J. Feldman,et al.  Quantum detection at millimeter wavelengths , 1985 .

[25]  Peter J. Feibelman,et al.  Microscopic calculation of electromagnetic fields in refraction at a jellium-vacuum interface , 1975 .

[26]  Lin Wu,et al.  Fowler-nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles , 2013, 2013 Abstracts IEEE International Conference on Plasma Science (ICOPS).

[27]  Michel Bosman,et al.  Nanoplasmonics: classical down to the nanometer scale. , 2012, Nano letters.

[28]  Takhee Lee,et al.  Single Molecule Electronic Devices , 2011, Advanced materials.

[29]  G. Toscano Semiclassical theory of nonclocal plasmonic excitation in metallic nanostructures , 2013 .

[30]  N J Halas,et al.  Optical spectroscopy of conductive junctions in plasmonic cavities. , 2010, Nano letters.

[31]  M. Raschke,et al.  Control of plasmon emission and dynamics at the transition from classical to quantum coupling. , 2014, Nano letters.

[32]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[33]  Photon-assisted transport in semiconductor nanostructures , 2003, cond-mat/0311001.

[34]  Yung Doug Suh,et al.  Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. , 2010, Nature materials.

[35]  J. Barton REVIEW: Some surface effects in the hydrodynamic model of metals , 1979 .

[36]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[37]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[38]  Gordon S. Kino,et al.  Optical antennas: Resonators for local field enhancement , 2003 .

[39]  W. Hess,et al.  Vibronic Raman scattering at the quantum limit of plasmons. , 2014, Nano letters.

[40]  John A Rogers,et al.  Nanostructured plasmonic sensors. , 2008, Chemical reviews.

[41]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[42]  G. W. Ford,et al.  Electromagnetic interactions of molecules with metal surfaces , 1984 .

[43]  Michael Scalora,et al.  Quantum conductivity for metal–insulator–metal nanostructures , 2014 .

[44]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[45]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[46]  A. Zayats,et al.  Localized surface plasmon resonances in spatially dispersive nano-objects: phenomenological treatise. , 2013, ACS nano.

[47]  Naomi J Halas,et al.  Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates. , 2005, Journal of the American Chemical Society.

[48]  Elizabeth Boer-Duchemin,et al.  Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle , 2016 .

[49]  Stefan Gottschalk,et al.  Electromagnetic Surface Modes , 2016 .

[50]  V. A. Apkarian,et al.  Raman scattering at plasmonic junctions shorted by conductive molecular bridges. , 2013, Nano letters.

[51]  A. Borisov,et al.  Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics. , 2015, Nano letters.

[52]  Hoon Cha,et al.  Bridging the Nanogap with Light: Continuous Tuning of Plasmon Coupling between Gold Nanoparticles. , 2015, ACS nano.

[53]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[54]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[55]  A. Borisov,et al.  Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response. , 2013, Physical review letters.

[56]  R. Nieminen,et al.  Quantized Evolution of the Plasmonic Response in a Stretched Nanorod. , 2015, Physical review letters.

[57]  J. Popp,et al.  Surface-enhanced Raman spectroscopy , 2009, Analytical and bioanalytical chemistry.

[58]  Plasmonics in optoelectronic devices. , 2012, Nanotechnology.

[59]  Jeremy J. Baumberg,et al.  Nanooptics of Molecular-Shunted Plasmonic Nanojunctions , 2014, Nano letters.

[60]  Reuven Gordon,et al.  Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation. , 2014, Nano letters.

[61]  Bert Hecht,et al.  Atomic-scale confinement of resonant optical fields. , 2012, Nano letters.

[62]  Lin Wu,et al.  Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions , 2014, Science.

[63]  Tomasz J. Antosiewicz,et al.  Competition between surface screening and size quantization for surface plasmons in nanoparticles , 2013 .

[64]  George C Schatz,et al.  Optical properties of nanowire dimers with a spatially nonlocal dielectric function. , 2010, Nano letters.

[65]  Arto V. Nurmikko,et al.  Strongly Interacting Plasmon Nanoparticle Pairs: From Dipole−Dipole Interaction to Conductively Coupled Regime , 2004 .

[66]  Z. Lu,et al.  Adjusting the inter-particle spacing of a nanoparticle array at the sub-nanometre scale by thermal annealing. , 2014, Chemical communications.

[67]  Y. Selzer,et al.  Electrical detection of surface plasmon polaritons by 1G0 gold quantum point contacts. , 2011, Nano letters.

[68]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[69]  Á. Rubio,et al.  Anisotropy Effects on the Plasmonic Response of Nanoparticle Dimers. , 2015, The journal of physical chemistry letters.

[70]  R. Arielly,et al.  Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies. , 2011, Nano letters.

[71]  V. A. Apkarian,et al.  Laser-induced scanning tunneling microscopy: Linear excitation of the junction plasmon. , 2010, The Journal of chemical physics.

[72]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[73]  Wenqi Zhu,et al.  Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering , 2014, Nature Communications.

[74]  R. T. Hill,et al.  Probing the Ultimate Limits of Plasmonic Enhancement , 2012, Science.

[75]  Richard W. Taylor,et al.  Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril "glue". , 2011, ACS nano.

[76]  D. Hamann,et al.  Theory and Application for the Scanning Tunneling Microscope , 1983 .

[77]  J. L. Yang,et al.  Chemical mapping of a single molecule by plasmon-enhanced Raman scattering , 2013, Nature.

[78]  Gordon S. Kino,et al.  Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles , 2005 .

[79]  Angel Rubio,et al.  Performance of nonlocal optics when applied to plasmonic nanostructures , 2013 .

[80]  J. Lambe,et al.  Light Emission from Inelastic Electron Tunneling , 1976 .

[81]  N. Mortensen,et al.  A generalized non-local optical response theory for plasmonic nanostructures , 2014, Nature Communications.

[82]  N. Mortensen,et al.  Nonlocal optical response in metallic nanostructures , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[83]  S. Maier,et al.  Distance control in-between plasmonic nanoparticles via biological and polymeric spacers , 2013 .

[84]  P. Apell A Simple Derivation of the Surface Contribution to the Reflectivity of a Metal, and its Use in the Van der Waals Interaction , 1981 .

[85]  Naomi J Halas,et al.  Plasmonics: an emerging field fostered by Nano Letters. , 2010, Nano letters.

[86]  F. Krausz Attosecond Physics , 2007, 2007 Conference on Lasers and Electro-Optics - Pacific Rim.

[87]  Xu,et al.  Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[88]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[89]  Garnett W. Bryant,et al.  Optical properties of coupled metallic nanorods for field-enhanced spectroscopy , 2005 .

[90]  Juan Carlos Cuevas,et al.  Optical rectification and field enhancement in a plasmonic nanogap. , 2010, Nature nanotechnology.

[91]  Garnett W. Bryant,et al.  The Morphology of Narrow Gaps Modifies the Plasmonic Response , 2015 .

[92]  P. Nordlander Molecular Tuning of Quantum Plasmon Resonances , 2014, Science.

[93]  Jennifer A. Dionne,et al.  Observation of quantum tunneling between two plasmonic nanoparticles. , 2013, Nano letters.

[94]  Hoon Cha,et al.  Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range. , 2014, ACS nano.

[95]  Annemarie Pucci,et al.  Angstrom-scale distance dependence of antenna-enhanced vibrational signals. , 2012, ACS nano.

[96]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[97]  Javier Aizpurua,et al.  Active quantum plasmonics , 2015, Science Advances.

[98]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[99]  Javier Aizpurua,et al.  Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers. , 2013, Optics express.

[100]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[101]  K. Kneipp,et al.  Coexistence of classical and quantum plasmonics in large plasmonic structures with subnanometer gaps , 2013 .

[102]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[103]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[104]  Schmidt,et al.  Size dependence of the optical response of spherical sodium clusters. , 1995, Physical review letters.

[105]  P. Nordlander,et al.  Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport. , 2011, The Journal of chemical physics.

[106]  J. Miao,et al.  Electron tomography at 2.4-ångström resolution , 2012, Nature.

[107]  A. Borisov,et al.  A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations. , 2015, Faraday discussions.

[108]  J. Pendry,et al.  Transformation-optics description of nonlocal effects in plasmonic nanostructures. , 2012, Physical review letters.

[109]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[110]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[111]  Bert Hecht,et al.  Electrically connected resonant optical antennas. , 2012, Nano letters.

[112]  Tal Ellenbogen,et al.  Chromatic plasmonic polarizers for active visible color filtering and polarimetry. , 2012, Nano letters.

[113]  Fuchs,et al.  Multipolar response of small metallic spheres: Nonlocal theory. , 1987, Physical review. B, Condensed matter.

[114]  A. Jauho,et al.  Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS , 2012, 1210.2535.

[115]  C. Gerber,et al.  Surface Studies by Scanning Tunneling Microscopy , 1982 .

[116]  J. Aizpurua,et al.  Evolution of Plasmonic Metamolecule Modes in the Quantum Tunneling Regime. , 2016, ACS nano.

[117]  J. Krenn,et al.  Gap plasmonics of silver nanocube dimers , 2016, 1601.07689.

[118]  M. Mayor,et al.  Resonant photoconductance of molecular junctions formed in gold nanoparticle arrays. , 2011, Journal of the American Chemical Society.

[119]  Javier Aizpurua,et al.  Plasmonic Response of Metallic Nanojunctions Driven by Single Atom Motion: Quantum Transport Revealed in Optics , 2016 .

[120]  J. Aizpurua,et al.  Controlling subnanometer gaps in plasmonic dimers using graphene. , 2013, Nano letters.

[121]  J. M. Pitarke,et al.  Tunneling spectroscopy: surface geometry and interface potential effects , 1990 .

[122]  U. Hohenester Quantum corrected model for plasmonic nanoparticles: A boundary element method implementation , 2015, 1505.03261.

[123]  A. Bouhelier,et al.  Nonlinear photon-assisted tunneling transport in optical gap antennas. , 2014, Nano letters.

[124]  Javier Aizpurua,et al.  Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. , 2006, Optics Express.

[125]  E. V. Chulkov,et al.  Theory of surface plasmons and surface-plasmon polaritons , 2007 .

[126]  Emil Prodan,et al.  Quantum plasmonics: optical properties and tunability of metallic nanorods. , 2010, ACS nano.

[127]  Bert Hecht,et al.  Electrically driven optical antennas , 2015 .

[128]  Eric C Le Ru,et al.  Single-molecule surface-enhanced Raman spectroscopy. , 2012, Annual review of physical chemistry.

[129]  Stefan Grafström,et al.  Photoassisted scanning tunneling microscopy , 2002 .

[130]  J. Aizpurua,et al.  Plasmonic nanobilliards: controlling nanoparticle movement using forces induced by swift electrons. , 2011, Nano letters.

[131]  B. de Boer,et al.  Electrical conduction through single molecules and self-assembled monolayers , 2008 .

[132]  Optical response in subnanometer gaps due to nonlocal response and quantum tunneling , 2012 .

[133]  L. Venkataraman,et al.  Single-molecule junctions beyond electronic transport. , 2013, Nature nanotechnology.