Determination of the solutions of the Navier-Stokes equations by a set of nodal values
暂无分享,去创建一个
[1] C. Foiaș,et al. Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$ , 1967 .
[2] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 2017 .
[3] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[4] R. A. Silverman,et al. The Mathematical Theory of Viscous Incompressible Flow , 1972 .
[5] Bifurcation of a T-periodic flow towards an nT-periodic flow and their non-linear stabilities , 1974 .
[6] Jim Douglas,et al. Collocation Methods for Parabolic Equations in a Single Space Variable , 1974 .
[7] R. Temam. Navier-Stokes Equations , 1977 .
[9] R. Rannacher,et al. Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .
[10] R. Temam,et al. Asymptotic numerical analysis for the Navier-Stokes equations, 1 , 1982 .
[11] R. Temam,et al. Asymptotic analysis of the navier-stokes equations , 1983 .
[12] Connexion entre la théorie mathématique des équations de Navier-Stokes et la théorie conventionnelle de la turbulence , 1983 .
[13] Peter Constantin,et al. Global Lyapunov Exponents, Kaplan-Yorke Formulas and the Dimension of the Attractors for 2D Navier-Stokes Equations , 1985 .
[14] R. Temam,et al. Attractors Representing Turbulent Flows , 1985 .