Determination of the solutions of the Navier-Stokes equations by a set of nodal values

We consider the Navier-Stokes equations of a viscous incompresible fluid, and we want to see to what extent these solutions can be determined by a discrete set of nodal values of these solutions. The results presented here are exact results and not approximate ones: we show, in several cases, that the solutions are entirely determined by their values on a discrete set, provided this set contains enough points and these points are sufficiently densely distributed (in a sense described in the article). Two typical results are the following ones; two stationary solutions coincide if they coincide on a set sufficiently dense but finite; similarly if the large time behavior of the solutions to the Navier-Stokes equations is known on an appropriate discrete set, then the large time behavior of the solution itself is totally determined.

[1]  C. Foiaș,et al.  Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$ , 1967 .

[2]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 2017 .

[3]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[4]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[5]  Bifurcation of a T-periodic flow towards an nT-periodic flow and their non-linear stabilities , 1974 .

[6]  Jim Douglas,et al.  Collocation Methods for Parabolic Equations in a Single Space Variable , 1974 .

[7]  R. Temam Navier-Stokes Equations , 1977 .

[8]  Comportement à l'infini des solutions des équations de Navier-Stokes et propriété des ensembles fonctionnels invariants (ou attracteurs) , 1982 .

[9]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[10]  R. Temam,et al.  Asymptotic numerical analysis for the Navier-Stokes equations, 1 , 1982 .

[11]  R. Temam,et al.  Asymptotic analysis of the navier-stokes equations , 1983 .

[12]  Connexion entre la théorie mathématique des équations de Navier-Stokes et la théorie conventionnelle de la turbulence , 1983 .

[13]  Peter Constantin,et al.  Global Lyapunov Exponents, Kaplan-Yorke Formulas and the Dimension of the Attractors for 2D Navier-Stokes Equations , 1985 .

[14]  R. Temam,et al.  Attractors Representing Turbulent Flows , 1985 .