Four Soviets Walk the Dog - with an Application to Alt's Conjecture

Given two polygonal curves in the plane, there are many ways to define a notion of similarity between them. One measure that is extremely popular is the Frechet distance. Since it has been proposed by Alt and Godau in 1992, many variants and extensions have been studied. Nonetheless, even more than 20 years later, the original O(n2 log n) algorithm by Alt and Godau for computing the Frechet distance remains the state of the art (here n denotes the number of vertices on each curve). This has led Helmut Alt to conjecture that the associated decision problem is 3SUM-hard. In recent work, Agarwal et al. show how to break the quadratic barrier for the discrete version of the Frechet distance, where one considers sequences of points instead of polygonal curves. Building on their work, we give a randomized algorithm to compute the Frechet distance between two polygonal curves in time [EQUATION] on a pointer machine and in time O(n2(log log n)2) on a word RAM. Furthermore, we show that there exists an algebraic decision tree for the decision problem of depth O(n2-e), for some e > 0. This provides evidence that the decision problem may not be 3SUM-hard after all and reveals an intriguing new aspect of this well-studied problem.

[1]  Erin W. Chambers,et al.  Homotopic Fréchet distance between curves or, walking your dog in the woods in polynomial time , 2010, Comput. Geom..

[2]  Sariel Har-Peled,et al.  Approximating the Fréchet Distance for Realistic Curves in Near Linear Time , 2010, Discrete & Computational Geometry.

[3]  Micha Sharir,et al.  On Range Searching with Semialgebraic Sets II , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[4]  Kevin Buchin,et al.  Fréchet Distance of Surfaces: Some Simple Hard Cases , 2010, ESA.

[5]  Joachim Gudmundsson,et al.  Detecting Commuting Patterns by Clustering Subtrajectories , 2011, Int. J. Comput. Geom. Appl..

[6]  Mihai Patrascu,et al.  Towards polynomial lower bounds for dynamic problems , 2010, STOC '10.

[7]  Richard J. Lipton,et al.  Multidimensional Searching Problems , 1976, SIAM J. Comput..

[8]  Helmut Alt,et al.  The Computational Geometry of Comparing Shapes , 2009, Efficient Algorithms.

[9]  Haim Kaplan,et al.  Computing the Discrete Fréchet Distance in Subquadratic Time , 2012, SIAM J. Comput..

[10]  Susanne Albers,et al.  Improved parallel integer sorting without concurrent writing , 1992, SODA '92.

[11]  Michael L. Fredman,et al.  How Good is the Information Theory Bound in Sorting? , 1976, Theor. Comput. Sci..

[12]  Jörg-Rüdiger Sack,et al.  Improved Algorithms for Partial Curve Matching , 2013, Algorithmica.

[13]  Wolfgang Mulzer,et al.  Delaunay Triangulations in O(sort(n)) Time and More , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[14]  Kevin Buchin,et al.  Computing the Fréchet distance between simple polygons , 2008, Comput. Geom..

[15]  Carola Wenk,et al.  Computing the Fréchet distance between folded polygons , 2015, Comput. Geom..

[16]  Sariel Har-Peled,et al.  Computing the Fréchet Distance between Folded Polygons , 2011, WADS.

[17]  Mark H. Overmars,et al.  On a Class of O(n2) Problems in Computational Geometry , 1995, Comput. Geom..

[18]  Leonidas J. Guibas,et al.  New Similarity Measures between Polylines with Applications to Morphing and Polygon Sweeping , 2002, Discret. Comput. Geom..

[19]  Helmut Alt,et al.  Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..

[20]  Maike Buchin,et al.  Can We Compute the Similarity between Surfaces? , 2007, Discret. Comput. Geom..

[21]  Sariel Har-Peled,et al.  The fréchet distance revisited and extended , 2012, TALG.

[22]  Boris Aronov,et al.  Fréchet Distance for Curves, Revisited , 2006, ESA.

[23]  Bettina Speckmann,et al.  Locally Correct Frechet Matchings , 2012, ESA.

[24]  Wolfgang Mulzer,et al.  Computing the Fréchet Distance with a Retractable Leash , 2016, Discret. Comput. Geom..

[25]  Sanjoy Dasgupta,et al.  Adaptive Control Processes , 2010, Encyclopedia of Machine Learning and Data Mining.

[26]  M. Buchin On the Computability of the Frechet Distance Between Triangulated Surfaces , 2007 .

[27]  Timothy M. Chan More algorithms for all-pairs shortest paths in weighted graphs , 2007, STOC '07.

[28]  Amir Nayyeri,et al.  How to Walk Your Dog in the Mountains with No Magic Leash , 2012, Discrete & Computational Geometry.

[29]  Bernard Chazelle,et al.  Lower bounds for linear degeneracy testing , 2005, J. ACM.

[30]  G. Rote,et al.  How Difficult is it to Walk the Dog ? , 2007 .

[31]  Timothy M. Chan,et al.  Necklaces, Convolutions, and X+Y , 2006, Algorithmica.

[32]  Joachim Gudmundsson,et al.  Towards Automated Football Analysis: Algorithms and Data Structures , 2010 .

[33]  Dieter Pfoser,et al.  On Map-Matching Vehicle Tracking Data , 2005, VLDB.

[34]  Timothy M. Chan,et al.  Necklaces, Convolutions, and X + Y , 2006, ESA.

[35]  Kevin Buchin,et al.  Exact algorithms for partial curve matching via the Fréchet distance , 2009, SODA.

[36]  Mikkel Thorup Randomized sorting in O(n log log n) time and linear space using addition, shift, and bit-wise boolean operations , 1997, SODA '97.

[37]  Micha Sharir,et al.  Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.

[38]  Nabil H. Mustafa,et al.  Near-Linear Time Approximation Algorithms for Curve Simplification , 2005, Algorithmica.

[39]  Michael Godau,et al.  A Natural Metric for Curves - Computing the Distance for Polygonal Chains and Approximation Algorithms , 1991, STACS.

[40]  Jeff Erickson,et al.  Bounds for Linear Satisfiability Problems , 1999, Chicago journal of theoretical computer science.

[41]  M. Godau On the complexity of measuring the similarity between geometric objects in higher dimensions , 1999 .

[42]  Timothy M. Chan All-Pairs Shortest Paths with Real Weights in O(n3/log n) Time , 2008, Algorithmica.

[43]  Bernard Chazelle,et al.  On a circle placement problem , 1986, Computing.

[44]  Atlas F. Cook,et al.  Geodesic Fréchet distance inside a simple polygon , 2008, TALG.

[45]  Jörg-Rüdiger Sack,et al.  Fréchet distance with speed limits , 2011, Comput. Geom..

[46]  Haim Kaplan,et al.  Computing the Discrete Fréchet Distance in Subquadratic Time , 2013, SODA.

[47]  Micha Sharir,et al.  An expander-based approach to geometric optimization , 1993, SCG '93.

[48]  Helmut Alt,et al.  Comparison of Distance Measures for Planar Curves , 2003, Algorithmica.

[49]  Dieter Pfoser,et al.  Addressing the Need for Map-Matching Speed: Localizing Global Curve-Matching Algorithms , 2006, 18th International Conference on Scientific and Statistical Database Management (SSDBM'06).

[50]  Erik D. Demaine,et al.  Subquadratic Algorithms for 3SUM , 2005, Algorithmica.

[51]  Sariel Har-Peled,et al.  Jaywalking Your Dog: Computing the Fréchet Distance with Shortcuts , 2012, SIAM J. Comput..

[52]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[53]  Joachim Gudmundsson,et al.  Fast Fréchet queries , 2011, Comput. Geom..

[54]  Joachim Gudmundsson,et al.  Constrained free space diagrams: a tool for trajectory analysis , 2010, Int. J. Geogr. Inf. Sci..

[55]  Piotr Indyk,et al.  Approximate nearest neighbor algorithms for Frechet distance via product metrics , 2002, SCG '02.