Students’ Understanding of Velocity-Time Graphs and the Sources of Conceptual Difficulties/Učeničko i studentsko razumijevanje grafova vremenske promjene brzine i izvori konceptualnih poteškoća

We investigated the students' ability to translate the velocity-time graph into a real physical situation and the possible sources of conceptual difficulties. The study involved the sample of n = 324 high-school/university students, and physics teachers in Croatia. The students were presented the original non-traditional open-ended graph problem. Their written answers were classified and used to form a closed-ended prediction questionnaire for teachers. Comparing the teachers’ expectations with the actual students' responses, we found that teachers significantly overestimate students' understanding. Our results also show that the observed difficulties are common to all groups of participants and not much dependent on the educational level and curriculum. We also found that the physics textbooks are also possible sources of difficulties, giving understated or incomplete statements regarding the sign of physical quantities in kinematic expressions. We feel that non-traditional graph problems of this kind could help teachers in establishing active-learning process in the classroom to become aware of students' thinking and to overcome the difficulties. / Ispitivali smo ucenicke i studentske sposobnosti prevođenja grafickog prikaza vremenske promjene brzine u realnu fizikalnu situaciju te moguce izvore konceptualnih poteskoca. Istraživanjem je obuhvacen uzorak od n = 324 srednjoskolskih ucenika, studenata fizike i srednjoskolskih nastavnika fizike iz Republike Hrvatske. Ucenicima i studentima smo zadali originalni netradicionalni graficki problem s pitanjima otvorenog tipa. Njihove pisane odgovore smo klasificirali te na tom temelju sastavili upitnik predviđanja zatvorenog tipa za nastavnike. Uspoređujuci odgovore koje nastavnici unaprijed ocekuju od ucenika, sa stvarnim odgovorima ucenika, uocili smo da nastavnici znacajno precjenjuju ucenicko razumijevanje. Nasi rezultati također pokazuju da su opažene poteskoce zajednicke za sve skupine ispitanika te da ne ovise u znacajnijoj mjeri o stupnju obrazovanja i kurikulumu. Ustanovili smo da hrvatski udžbenici također predstavljaju moguci izvor poteskoca jer sadrže nedorecene i necjelovite tvrdnje koje se odnose na predznake fizickih velicina u kinematickim jednadžbama. Smatramo da netradicionalni graficki problemi ovog tipa poticu aktivni proces ucenja te nastavnicima omogucuju prilagodbu ucenickom nacinu razmisljanja s ciljem svladavanja opaženih poteskoca.

[1]  Lillian C. McDermott Guest Comment: How we teach and how students learn—A mismatch? , 1993 .

[2]  Beat Kleiner,et al.  Graphical Methods for Data Analysis , 1983 .

[3]  J. Mokros,et al.  The impact of microcomputer‐based labs on children's ability to interpret graphs , 1987 .

[4]  Nataša Erceg,et al.  Razumijevanje koncepata u fizičkim jednadžbama , 2013 .

[5]  G. Masters,et al.  Textbook treatments and students' understanding of acceleration , 1992 .

[6]  L. McDermott,et al.  Investigation of student understanding of the concept of velocity in one dimension , 1980 .

[7]  Jose M. Aguirre Student preconceptions about vector kinematics , 1988 .

[8]  P. C. Peters Even honors students have conceptual difficulties with physics , 1982 .

[9]  L. McDermott,et al.  Investigation of student understanding of the concept of acceleration in one dimension , 1981 .

[10]  William L. Barclay,et al.  Graphing Misconceptions and Possible Remedies Using Microcomputer-Based Labs. , 1985 .

[11]  Stephen Knutton,et al.  Using out-of-school experience in science lessons: reality or rhetoric? , 1997 .

[12]  Jay R. Price Construct Validity of Test Items Measuring Acquisition of Information from Line Graphs. , 1974 .

[13]  V. Mešić,et al.  Probing students' critical thinking processes by presenting ill-defined physics problems , 2013 .

[14]  David E. Meltzer,et al.  Relation between students’ problem-solving performance and representational format , 2005 .

[15]  Lillian C. McDermott,et al.  A conceptual approach to teaching kinematics , 1987 .

[16]  Michael J. Padilla,et al.  The Construction and Validation of the Test of Graphing in Science (TOGS). , 1986 .

[17]  V. Mešić,et al.  Using photographs to elicit student ideas about physics: The case of an unusual liquid-level phenomenon , 2014 .

[18]  Herve Gazel La sémiologie graphique sort du cadre , 2014 .

[19]  Lillian C. McDermott,et al.  Student difficulties in connecting graphs and physics: Examples from kinematics , 1987 .

[20]  Robert J. Beichner,et al.  Testing student interpretation of kinematics graphs , 1994 .

[21]  F. Reif,et al.  Facilitation of Scientific Concept Learning by Interpretation Procedures and Diagnosis , 1988 .

[22]  Jouni Viiri,et al.  Engineering teachers' pedagogical content knowledge , 2003 .

[23]  Peter S. Shaffer,et al.  Research as a guide for teaching introductory mechanics: An illustration in the context of the Atwood’s machine , 1994 .

[24]  Gorazd Planinsic,et al.  Sketching graphs—an efficient way of probing students' conceptions , 2008 .

[25]  J. S. Dowker,et al.  Fundamentals of Physics , 1970, Nature.

[26]  Susan N. Friel,et al.  Making sense of graphs: Critical factors influencing comprehension and instructional implications. , 2001 .

[27]  Michael C. Wittmann,et al.  The Role of Sign in Students' Modeling of Scalar Equations , 2010 .

[28]  Nataša Erceg,et al.  Students' strategies for solving partially specified physics problems , 2011 .

[29]  Horst Stöcker,et al.  Handbook of physics , 2002 .

[30]  James T. Laverty,et al.  Function plot response: A scalable system for teaching kinematics graphs , 2012 .

[31]  Lillian C. McDermott,et al.  Millikan Lecture 1990: What we teach and what is learned—Closing the gap , 1991 .

[32]  R. B. Johnson,et al.  Educational Research: Quantitative, Qualitative, and Mixed Approaches , 2007 .

[33]  Frederick Reif,et al.  Cognition for Interpreting Scientific Concepts: A Study of Acceleration , 1992 .

[34]  Ibrahim A. Halloun,et al.  Common sense concepts about motion , 1985 .

[35]  Noah S. Podolefsky,et al.  Students and Instructors May Not See Eye to Eye , 2006 .

[36]  Philip M. Sadler,et al.  Teacher predictions versus actual student gains , 1993 .

[37]  Andrew F. Heckler,et al.  Systematic study of student understanding of the relationships between the directions of force, velocity, and acceleration in one dimension , 2011 .

[38]  Partially specified physics problems: university students' attitudes and performance , 2011 .

[39]  Italo Testa,et al.  Students' reading images in kinematics: The case of real-time graphs , 2002 .

[40]  Arnold B. Arons,et al.  Student Patterns of Thinking and Reasoning. Part Three. , 1984 .

[41]  Peter S. Shaffer,et al.  A research-based approach to improving student understanding of the vector nature of kinematical concepts , 2005 .