Origin and evolution of North American polyploid Silene (Caryophyllaceae).

Nuclear DNA sequences from introns of the low-copy nuclear gene family encoding the second largest subunit of RNA polymerases and the ribosomal internal transcribed spacer (ITS) regions, combined with the psbE-petL spacer and the rps16 intron from the chloroplast genome were used to infer origins and phylogenetic relationships of North American polyploid Silene species and their closest relatives. Although the vast majority of North American Silene species are polyploid, which contrasts to the diploid condition dominating in other parts of the world, the phylogenetic analyses rejected a single origin of the North American polyploids. One lineage consists of tetraploid Silene menziesii and its diploid allies. A second lineage, Physolychnis s.l., consists of Arctic, European, Asian, and South American taxa in addition to the majority of the North American polyploids. The hexaploid S. hookeri is derived from an allopolyploidization between these two lineages. The tetraploid S. nivea does not belong to any of these lineages, but is closely related to the European diploid S. baccifera. The poor resolution within Physolychnis s.l. may be attributed to rapid radiation, recombination among homoeologues, homoplasy, or any combination of these factors. No extant diploid donors could be identified in Physolychnis s.l.

[1]  Takahiro Kanagawa,et al.  Bias and artifacts in multitemplate polymerase chain reactions (PCR). , 2003, Journal of bioscience and bioengineering.

[2]  A. R. Kruckeberg Artificial crosses of western North American Silenes , 1961, Brittonia.

[3]  B. Hall,et al.  The Molecular Systematics of Rhododendron (Ericaceae): A Phylogeny Based Upon RPB2 Gene Sequences , 2005 .

[4]  T. Holtsford,et al.  Molecular systematics of the eastern North American Silene (Caryophyllaceae): Evidence from nuclear ITS and chloroplast trnL intron sequences , 2003 .

[5]  J. Wendel,et al.  Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Ashley B. Morris,et al.  Northern hemisphere biogeography of Cerastium (Caryophyllaceae): insights from phylogenetic analysis of noncoding plastidnucleotide sequences. , 2004, American journal of botany.

[7]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[8]  T. Sang,et al.  Phylogenetic utility of the glycerol-3-phosphate acyltransferase gene: evolution and implications in Paeonia (Paeoniaceae). , 2001, Molecular phylogenetics and evolution.

[9]  R. Shoemaker,et al.  Placing paleopolyploidy in relation to taxon divergence: a phylogenetic analysis in legumes using 39 gene families. , 2005, Systematic biology.

[10]  M. Koch,et al.  Molecular phylogenetics of Thlaspi s.l. (Brassicaceae) based on chloroplast DNA restriction site variation and sequences of the internal transcribed spacers of nuclear ribosomal DNA. , 1997 .

[11]  F. Ayala Molecular systematics , 2004, Journal of Molecular Evolution.

[12]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[13]  J. Wendel,et al.  PCR-mediated recombination in amplification products derived from polyploid cotton , 2002, Theoretical and Applied Genetics.

[14]  K. T. Huber,et al.  Phylogenetic networks from multi-labelled trees , 2006, Journal of mathematical biology.

[15]  M. Perlin,et al.  Isolates of Microbotryum violaceum from North American host species are phylogenetically distinct from their European host-derived counterparts. , 2002, Molecular phylogenetics and evolution.

[16]  Jonathan F Wendel,et al.  Polyploidy and Genome Evolution in Plants This Review Comes from a Themed Issue on Genome Studies and Molecular Genetics Edited , 2022 .

[17]  K. Crandall,et al.  The Effect of Recombination on the Accuracy of Phylogeny Estimation , 2002, Journal of Molecular Evolution.

[18]  Vincent Moulton,et al.  Reconstructing the evolutionary history of polyploids from multilabeled trees. , 2006, Molecular biology and evolution.

[19]  M. Sanderson,et al.  Evidence on the monophyly of Astragalus (Fabaceae) and its major subgroups based on nuclear ribosomal DNA ITS and chloroplast DNA trnL intron data , 1999 .

[20]  B. Oxelman,et al.  Inferring the history of the polyploid Silene aegaea (Caryophyllaceae) using plastid and homoeologous nuclear DNA sequences. , 2001, Molecular phylogenetics and evolution.

[21]  L. Gottlieb,et al.  Phylogenetic Relationships among the Sections of Clarkia(Onagraceae) Inferred from the Nucleotide Sequences of PgiC , 1996 .

[22]  D. Ord,et al.  PAUP:Phylogenetic analysis using parsi-mony , 1993 .

[23]  M. Hershkovitz,et al.  Ribosomal DNA evidence and disjunctions of western American Portulacaceae. , 2000, Molecular phylogenetics and evolution.

[24]  Bengt Oxelman,et al.  Chloroplastrps16 intron phylogeny of the tribeSileneae (Caryophyllaceae) , 1997, Plant Systematics and Evolution.

[25]  B. Oxelman,et al.  A revised generic classification of the tribe Sileneae (Caryophyllaceae) (vol 20, pg 513, 2000) , 2000 .

[26]  T. Eriksson,et al.  Phylogenetic Relationships of Geum (Rosaceae) and Relatives Inferred from the nrITS and trnL-trnF Regions , 2009 .

[27]  A. Coleman,et al.  Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species , 1988 .

[28]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[29]  M Fishbein,et al.  Phylogeny of Saxifragales (angiosperms, eudicots): analysis of a rapid, ancient radiation. , 2001, Systematic biology.

[30]  B. Gaut,et al.  DNA sequence evidence for the segmental allotetraploid origin of maize. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[31]  A. R. Kruckeberg CHROMOSOME NUMBERS IN SILENE (CARYOPHYLLACEAE). II , 1954 .

[32]  J. Braman,et al.  PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. , 1996, Nucleic acids research.

[33]  C. Bult,et al.  TESTING SIGNIFICANCE OF INCONGRUENCE , 1994 .

[34]  K. B. Blackburn,et al.  THE INCIDENCE OF POLYPLOIDY IN THE CARYOPHYLLACEAE OF BRITAIN AND OF PORTUGAL , 1957 .

[35]  B. Hall,et al.  Usefulness of RNA polymerase II coding sequences for estimation of green plant phylogeny. , 1998, Molecular biology and evolution.

[36]  M. Feldman,et al.  Sequence Elimination and Cytosine Methylation Are Rapid and Reproducible Responses of the Genome to Wide Hybridization and Allopolyploidy in Wheat , 2001, The Plant Cell Online.

[37]  E. Dennis,et al.  The alcohol dehydrogenase genes of cotton , 1996, Plant Molecular Biology.

[38]  B. Oxelman,et al.  The origin and number of introductions of the Hawaiian endemic Silene species (Caryophyllaceae). , 2007, American journal of botany.

[39]  A. R. Kruckeberg Intergeneric hybrids in the lychnideae (Caryophyllaceae) , 1962, Brittonia.

[40]  B. Bremer,et al.  Discovery of paralogous nuclear gene sequences coding for the second-largest subunit of RNA polymerase II (RPB2) and their phylogenetic utility in gentianales of the asterids. , 2000, Molecular biology and evolution.

[41]  T. Sang,et al.  Phylogeny of rice genomes with emphasis on origins of allotetraploid species. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[42]  B. G. Baldwin,et al.  Phylogeny and ecological radiation of New World thistles (Cirsium, Cardueae – Compositae) based on ITS and ETS rDNA sequence data , 2002, Molecular ecology.

[43]  K. Müller SeqState: primer design and sequence statistics for phylogenetic DNA datasets. , 2005, Applied bioinformatics.

[44]  C. Hitchcock,et al.  A revision of the North American species of Silene , 1947 .

[45]  B. Oxelman,et al.  Evolution of a RNA polymerase gene family in Silene (Caryophyllaceae)-incomplete concerted evolution and topological congruence among paralogues. , 2004, Systematic biology.

[46]  D. Schemske,et al.  PATHWAYS, MECHANISMS, AND RATES OF POLYPLOID FORMATION IN FLOWERING PLANTS , 1998 .

[47]  C. Desfeux,et al.  Systematics of Euromediterranean Silene (Caryophyllaceae): evidence from a phylogenetic analysis using ITS sequences. , 1996, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[48]  K. Müller,et al.  Incorporating information from length-mutational events into phylogenetic analysis. , 2006, Molecular phylogenetics and evolution.

[49]  G. Coruzzi,et al.  Molecular evolution of duplicate copies of genes encoding cytosolic glutamine synthetase in Pisum sativum , 1995, Plant Molecular Biology.

[50]  Á. Löve CHROMOSOME NUMBER REPORTS LXIX , 1980 .

[51]  P. Hengen Methods and reagents: Fidelity of DNA polymerases for PCR , 1995 .

[52]  A. R. Kruckeberg Artificial crosses involving eastern North American silenes , 1964, Brittonia.

[53]  R. Bateman,et al.  Molecular phylogeny of the palm genus Chamaedorea, based on the low-copy nuclear genes PRK and RPB2. , 2006, Molecular phylogenetics and evolution.

[54]  Jane Masterson,et al.  Stomatal Size in Fossil Plants: Evidence for Polyploidy in Majority of Angiosperms , 1994, Science.

[55]  K. Hilu,et al.  Polyploidy and the evolution of domesticated plants , 1993 .

[56]  J. W. Pendleton,et al.  Surveys of Gene Families Using Polymerase Chain Reaction: PCR Selection and PCR Drift , 1994 .

[57]  Jonathan F. Wendel,et al.  Genome evolution in polyploids , 2004, Plant Molecular Biology.

[58]  G. Drouin,et al.  Seed plant phylogeny: gnetophytes are derived conifers and a sister group to Pinaceae. , 2006, Molecular phylogenetics and evolution.

[59]  B. Oxelman,et al.  Generic boundaries in the tribe Sileneae (Caryophyllaceae) as inferred from nuclear rDNA sequences , 1995 .

[60]  L. Rieseberg,et al.  Plant Speciation , 2007, Science.

[61]  J. Wendel,et al.  Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. , 2002, American journal of botany.

[62]  Jie Luo,et al.  RPB2 gene phylogeny in flowering plants, with particular emphasis on asterids. , 2004, Molecular phylogenetics and evolution.

[63]  M. Crisp,et al.  Paralogy and orthology in the MALVACEAE rpb2 gene family: investigation of gene duplication in hibiscus. , 2004, Molecular biology and evolution.

[64]  M. Donoghue,et al.  Persistent nuclear ribosomal DNA sequence polymorphism in the Amelanchier agamic complex (Rosaceae). , 1997, Molecular biology and evolution.

[65]  T. Sang,et al.  Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Michael J. Sanderson,et al.  Erratum: The ITS Region of Nuclear Ribosomal DNAZ: A Valuable Source of Evidence on Angiosperm Phylogeny , 1995 .

[67]  H. Kihara,et al.  Chromosomenzahlen und systematische Gruppierung der Rumex-Arten , 1926, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[68]  S. Otto,et al.  Polyploid incidence and evolution. , 2000, Annual review of genetics.

[69]  J. Doyle,et al.  Internal transcribed spacer repeat‐specific primers and the analysis of hybridization in the Glycine tomentella (Leguminosae) polyploid complex , 2002, Molecular ecology.

[70]  Bengt Oxelman,et al.  Polyploid origins in a circumpolar complex in Draba (Brassicaceae) inferred from cloned nuclear DNA sequences and fingerprints. , 2004, Molecular phylogenetics and evolution.

[71]  Bengt Oxelman,et al.  Origin and Evolution of a Circumpolar Polyploid Species Complex in Silene (Caryophyllaceae) Inferred from Low Copy Nuclear RNA Polymerase Introns, rDNA, and Chloroplast DNA , 2005 .

[72]  Mark P. Simmons,et al.  Gaps as characters in sequence-based phylogenetic analyses. , 2000, Systematic biology.

[73]  D. Soltis,et al.  Polyploidy: recurrent formation and genome evolution. , 1999, Trends in ecology & evolution.