Carrier transport mechanisms of nonvolatile write-once-read-many-times memory devices with InP–ZnS core-shell nanoparticles embedded in a polymethyl methacrylate layer

Current-voltage (I-V) curves at 300 K for Al/InP–ZnS nanoparticles embedded in a polymethyl methacrylate layer/Al devices showed electrical bistability for write-once-read-many-times (WORM) memory devices. From the I-V curves, the ON/OFF ratio for the device with InP–ZnS nanoparticles was significantly larger than that for the device without InP–ZnS nanoparticles, indicative of the existence of charge capture in the InP nanoparticles. The estimated retention time of the ON state for the WORM memory device was more than 10 years. The carrier transport mechanisms for the WORM memory devices are described by using several models to fit the experimental I-V data.

[1]  J. Ouyang,et al.  Electrical Switching and Bistability in Organic/Polymeric Thin Films and Memory Devices , 2006 .

[2]  Chunxiang Zhu,et al.  POLYMER MEMORIES: BISTABLE ELECTRICAL SWITCHING AND DEVICE PERFORMANCE , 2007 .

[3]  D. Vuillaume,et al.  Metal∕organic∕metal bistable memory devices , 2004, cond-mat/0409758.

[4]  D.S.H. Chan,et al.  A flexible polymer memory device , 2007 .

[5]  Xiangkang Meng,et al.  Field-induced resistive switching based on space-charge-limited current , 2007 .

[6]  A. Pal,et al.  Write-Once-Read-Many-Times (WORM) Memory Applications in a Monolayer of Donor/Acceptor Supramolecule , 2007 .

[7]  S. Rhee,et al.  Electronic characterization of Al/PMMA[poly(methyl methacrylate)]/p-Si and Al/CEP(cyanoethyl pullulan)/p-Si structures , 2006 .

[8]  M. Haase,et al.  Strongly luminescent InP/ZnS core-shell nanoparticles. , 2001, ChemPhysChem.

[9]  D. Kwong,et al.  WORM-Type Memory Device Based on a Conjugated Copolymer Containing Europium Complex in the Main Chain , 2006 .

[10]  Tae Whan Kim,et al.  Memory effect of CdSe∕ZnS nanoparticles embedded in a conducting poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene] polymer layer , 2007 .

[11]  K. S. Narayan,et al.  Relaxation processes in aromatic polyimide , 2002 .

[12]  Xiaogang Peng,et al.  Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent , 2002 .

[13]  J. Bernède,et al.  Improvement of organic solar cell performances using a zinc oxide anode coated by an ultrathin metallic layer , 2008 .

[14]  Charles R. Szmanda,et al.  Programmable polymer thin film and non-volatile memory device , 2004, Nature materials.

[15]  Luisa D. Bozano,et al.  Mechanism for bistability in organic memory elements , 2004 .

[16]  A. Facchetti,et al.  High-performance transparent inorganic–organic hybrid thin-film n-type transistors , 2006, Nature materials.

[17]  J. Jang,et al.  Transparent organic bistable memory device with pure organic active material and Al/indium tin oxide electrode , 2008 .

[18]  S. Möller,et al.  Electrochromic conductive polymer fuses for hybrid organic/inorganic semiconductor memories , 2003 .

[19]  Jianyong Ouyang,et al.  Nonvolatile electrical bistability of organic/metal-nanocluster/organic system , 2003 .

[20]  Sunho Jeong,et al.  Organic-inorganic hybrid dielectrics with low leakage current for organic thin-film transistors , 2006 .

[21]  V. Bulović,et al.  Electroluminescence from single monolayers of nanocrystals in molecular organic devices , 2002, Nature.

[22]  S. Möller,et al.  A polymer/semiconductor write-once read-many-times memory , 2003, Nature.

[23]  J. Campbell Scott,et al.  Is There an Immortal Memory? , 2004, Science.

[24]  Olli Ikkala,et al.  Fullerene-based bistable devices and associated negative differential resistance effect , 2005 .

[25]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[26]  S. Forrest,et al.  A low switching voltage organic-on-inorganic heterojunction memory element utilizing a conductive polymer fuse on a doped silicon substrate , 2004 .