A robust nonparametric approach to the analysis of scientific productivity

Data on scientific productivity at institutes of the French INSERM and at biomedical research institutes of the Italian CNR for 1997 were analysed. Available data on human capital input and geographical agglomeration allowed the estimation and comparison of efficiency measures. Nonparametric envelopment techniques were used, and robust nonparametric techniques were applied in this work for the first time for evaluating scientific productivity. They are shown to be useful tools to compute scientific productivity indicators and make institutional comparative analyses. Taking into account a large number of methodological problems, a meaningful and rigorous indirect comparison is made possible. Several possible explanations of the observed differences in productivity are commented on. Copyright , Beech Tree Publishing.

[1]  Andrea Bonaccorsi,et al.  The organization of science. Size, agglomeration and age effects in scientific productivity , 2002 .

[2]  W. Meeusen,et al.  Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error , 1977 .

[3]  Paula E. Stephan,et al.  Knowledge spillovers in biotechnology: sources and incentives , 1999 .

[4]  P. David,et al.  Toward a new economics of science , 1994 .

[5]  P. Ramsden Describing and explaining research productivity , 1994 .

[6]  Hans-Dieter Daniel,et al.  Research performance evaluation in the German university sector , 1990, Scientometrics.

[7]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[8]  P. W. Wilson,et al.  TESTING RESTRICTIONS IN NONPARAMETRIC EFFICIENCY MODELS , 2001 .

[9]  P. Seglen,et al.  Education and debate , 1999, The Ethics of Public Health.

[10]  Issei Fujishiro,et al.  The elements of graphing data , 2005, The Visual Computer.

[11]  Jyrki Wallenius,et al.  Value efficiency analysis of academic research , 1998, Eur. J. Oper. Res..

[12]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[13]  van Raan,et al.  Advanced bibliometric methods to assess research performance and scientific development: basic principles and recent practical applications , 1993 .

[14]  Francis Narin,et al.  Bibliometric performance measures , 1996, Scientometrics.

[15]  Agha Iqbal Ali,et al.  Output-input ratio analysis and DEA frontier , 2002, Eur. J. Oper. Res..

[16]  Timothy Coelli,et al.  An Introduction to Efficiency and Productivity Analysis , 1997 .

[17]  S. Grosskopf,et al.  Evaluating performance in Chicago public high schools in the wake of decentralization , 2001 .

[18]  Leâ Opold Simar,et al.  A general methodology for bootstrapping in non-parametric frontier models , 2000 .

[19]  Tibor Braun,et al.  Cross-field normalization of scientometric indicators , 1996, Scientometrics.

[20]  A. U.S.,et al.  Measuring the efficiency of decision making units , 2003 .

[21]  Ben R. Martin,et al.  The use of multiple indicators in the assessment of basic research , 1996, Scientometrics.

[22]  O. H. Brownlee,et al.  ACTIVITY ANALYSIS OF PRODUCTION AND ALLOCATION , 1952 .

[23]  A. N. Link,et al.  Economic performance measures for evaluating government-sponsored research , 1996, Scientometrics.

[24]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[25]  S. Schwartz,et al.  Measuring the impact of scientific publications. The case of the biomedical sciences , 2005, Scientometrics.

[26]  T. V. Leeuwen,et al.  Impact factors can mislead , 1996, Nature.

[27]  Rolf Färe,et al.  Measuring School District Performance , 1989 .

[28]  A. U.S.,et al.  FORMULATION AND ESTIMATION OF STOCHASTIC FRONTIER PRODUCTION FUNCTION MODELS , 2001 .

[29]  Michael R. Darby,et al.  GEOGRAPHICALLY LOCALIZED KNOWLEDGE: SPILLOVERS OR MARKETS? , 1998 .

[30]  M. Feldman,et al.  R&D spillovers and the ge-ography of innovation and production , 1996 .

[31]  J. Florens,et al.  Nonparametric frontier estimation: a robust approach , 2002 .

[32]  Shawna Grosskopf,et al.  Anticipating the Consequences of School Reform: a New Use of Dea , 1999 .

[33]  P. W. Wilson,et al.  Statistical Inference in Nonparametric Frontier Models: The State of the Art , 1999 .

[34]  J. Sylvan Katz,et al.  Geographical proximity and scientific collaboration , 1994, Scientometrics.

[35]  James D. Adams,et al.  Research Productivity in a System of Universities , 1996 .

[36]  W. Greene A Gamma-distributed stochastic frontier model , 1990 .

[37]  Jeff Kennington,et al.  An Application of Mathematical Programming to Assess Productivity in the Houston Independent School District , 1982 .

[38]  R. Stevenson Likelihood functions for generalized stochastic frontier estimation , 1980 .

[39]  W. Cooper,et al.  Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software , 1999 .

[40]  Peter L. Brooks,et al.  Visualizing data , 1997 .