On characterizations of classical polynomials

It is well known that the classical families of Jacobi, Laguerre, Hermite, and Bessel polynomials are characterized as eigenvectors of a second order linear differential operator with polynomial coefficients, Rodrigues formula, etc. In this paper we present a unified study of the classical discrete polynomials and q-polynomials of the q-Hahn tableau by using the difference calculus on linear-type lattices. We obtain in a straightforward way several characterization theorems for the classical discrete and q-polynomials of the “q-Hahn tableau”. Finally, a detailed discussion of a characterization by Marcellán et al. is presented. © 2005 Elsevier B.V. All rights reserved. MSC: 33C45; 33D45

[1]  Francisco Marcellán,et al.  A distributional study of discrete classical orthogonal polynomials , 1995 .

[2]  V. B. Uvarov,et al.  Classical Orthogonal Polynomials of a Discrete Variable , 1991 .

[3]  Wolfgang Hahn,et al.  Über die Jacobischen Polynome und zwei verwandte Polynomklassen , 1935 .

[4]  W. A. Al-Salam Characterization Theorems for Orthogonal Polynomials , 1990 .

[5]  J. C. Medem A family of singular semi-classical functionals , 2002 .

[6]  J. C. Medem,et al.  q -Classical polynomials and the q -Askey and Nikiforov-Uvarov tableaus , 2001 .

[7]  S. Bochner,et al.  Über Sturm-Liouvillesche Polynomsysteme , 1929 .

[8]  R. Álvarez-Nodarse,et al.  On the q-polynomials in the exponential lattice x(s)=c 1 qs +c 3 , 2007 .

[9]  W. Hahn Über Orthogonalpolynome, die q-Differenzengleichungen genügen , 1949 .

[10]  T. Chihara,et al.  Another Characterization of the Classical Orthogonal Polynomials , 1972 .

[11]  Francisco Marcellán,et al.  Classical orthogonal polynomials: A functional approach , 1994 .

[12]  P. Lesky Über Polynomsysteme, die Sturm-Liouvilleschen Differenzengleichungen genügen , 1962 .

[13]  Velleda Baldoni,et al.  Representations of Lie groups and quantum groups , 1994 .

[14]  Max L. Warshauer,et al.  Lecture Notes in Mathematics , 2001 .

[15]  T. Chihara,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[16]  Emil Grosswald,et al.  Bessel polynomials and bessel functions: Differential equations and their solutions , 1978 .

[17]  Tom H. Koornwinder,et al.  Compact quantum groups and q-special functions , 1994 .

[18]  Mizan Rahman,et al.  On classical orthogonal polynomials , 1995 .

[19]  S. Suslov The theory of difference analogues of special functions of hypergeometric type , 1989 .

[20]  Francesco Giacomo Tricomi,et al.  Vorlesungen über Orthogonalreihen , 1955 .

[21]  J. C. Medem The quasi-orthogonality of the derivatives of semi-classical polynomials , 2002 .

[22]  Francisco Marcellán,et al.  On the “Favard theorem” and its extensions , 2001 .

[23]  Polynomial solutions of hypergeometric type difference equations and their classification , 1993 .

[24]  Emanuel Henry Hildebrandt,et al.  Systems of Polynomials Connected with the Charlier Expansions and the Pearson Differential and Difference Equations , 1931 .

[25]  J. Petronilho,et al.  On the solution of some distributional differential equations: existence and characterizations of the classical moment functionals , 1994 .