Accurate and precise characterization of linear optical interferometers

We combine single- and two-photon interference procedures for characterizing any multi-port linear optical interferometer accurately and precisely. Accuracy is achieved by estimating and correcting systematic errors that arise due to spatiotemporal and polarization mode mismatch. Enhanced accuracy and precision are attained by fitting experimental coincidence data to curve simulated using measured source spectra. We employ bootstrapping statistics to quantify the resultant degree of precision. A scattershot approach is devised to effect a reduction in the experimental time required to characterize the interferometer. The efficacy of our characterization procedure is verified by numerical simulations.

[1]  P. Greenwood,et al.  A Guide to Chi-Squared Testing , 1996 .

[2]  Andrew G. White,et al.  Direct characterization of linear-optical networks. , 2012, Optics express.

[3]  Dong Zhou,et al.  Two-particle quantum walks applied to the graph isomorphism problem , 2010, 1002.3003.

[4]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[5]  Barry C Sanders,et al.  Complete Characterization of Quantum-Optical Processes , 2008, Science.

[6]  Jun Yan,et al.  Goodness‐of‐fit testing based on a weighted bootstrap: A fast large‐sample alternative to the parametric bootstrap , 2012, 1202.5682.

[7]  A. Crespi,et al.  Integrated multimode interferometers with arbitrary designs for photonic boson sampling , 2013, Nature Photonics.

[8]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[9]  B. Efron,et al.  Bootstrap confidence intervals , 1996 .

[10]  Timothy C. Ralph,et al.  Modelling photo-detectors in quantum optics , 2005, quant-ph/0511099.

[11]  Gregory R. Steinbrecher,et al.  High-fidelity quantum state evolution in imperfect photonic integrated circuits , 2015 .

[12]  Philip Walther,et al.  Experimental boson sampling , 2012, Nature Photonics.

[13]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[14]  M. Thompson,et al.  Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit , 2012 .

[15]  R. Plackett,et al.  Karl Pearson and the Chi-squared Test , 1983 .

[16]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[17]  R. Mirin,et al.  Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor , 2007 .

[18]  M. Markham,et al.  Quantum interference of single photons from remote nitrogen-vacancy centers in diamond. , 2011, Physical review letters.

[19]  Keith R. Motes,et al.  Erratum: Linear Optical Quantum Metrology with Single Photons: Exploiting Spontaneously Generated Entanglement to Beat the Shot-Noise Limit [Phys. Rev. Lett. 114, 170802 (2015)]. , 2017, Physical review letters.

[20]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[21]  G. W. Snedecor Statistical Methods , 1964 .

[22]  G. Vallone,et al.  Two-particle bosonic-fermionic quantum walk via integrated photonics. , 2011, Physical review letters.

[23]  Christine Silberhorn,et al.  Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks. , 2004, Physical review letters.

[24]  Paul G. Kwiat,et al.  Photonic State Tomography , 2005 .

[25]  Dirk Englund,et al.  On-chip detection of non-classical light by scalable integration of single-photon detectors , 2014, Nature Communications.

[26]  T. Tao Topics in Random Matrix Theory , 2012 .

[27]  Peter P Rohde,et al.  Linear optical quantum metrology with single photons: exploiting spontaneously generated entanglement to beat the shot-noise limit. , 2015, Physical review letters.

[28]  Barry C. Sanders,et al.  Stability of the Trotter–Suzuki decomposition , 2014, 1403.3469.

[29]  A. Politi,et al.  Quantum Walks of Correlated Photons , 2010, Science.

[30]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[31]  Dirk Englund,et al.  Dipole induced transparency in waveguide coupled photonic crystal cavities , 2008 .

[32]  P. Diaconis,et al.  Computer-Intensive Methods in Statistics , 1983 .

[33]  Peter C Humphreys,et al.  Multiphoton quantum interference in a multiport integrated photonic device , 2012, Nature Communications.

[34]  O. Okunev,et al.  Picosecond superconducting single-photon optical detector , 2001 .

[35]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[36]  A Laing,et al.  Boson sampling from a Gaussian state. , 2014, Physical review letters.

[37]  A. Politi,et al.  Multimode quantum interference of photons in multiport integrated devices , 2010, Nature communications.

[38]  A. Politi,et al.  Manipulation of multiphoton entanglement in waveguide quantum circuits , 2009, 0911.1257.

[39]  Aaron J. Miller,et al.  Noise-free high-efficiency photon-number-resolving detectors , 2005, quant-ph/0506175.

[40]  Aaron J. Miller,et al.  Counting near-infrared single-photons with 95% efficiency. , 2008, Optics express.

[41]  Scott Aaronson,et al.  The Computational Complexity of Linear Optics , 2013, Theory Comput..

[42]  B. J. Metcalf,et al.  Boson Sampling on a Photonic Chip , 2012, Science.

[43]  F. Scholz Maximum Likelihood Estimation , 2006 .

[44]  Robert Tibshirani,et al.  Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy , 1986 .

[45]  Benjamin M. Zwickl,et al.  Experimental realization of a quantum quincunx by use of linear optical elements , 2005 .

[46]  Nicolò Spagnolo,et al.  Experimental scattershot boson sampling , 2015, Science Advances.

[47]  Karl Pearson F.R.S. X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling , 2009 .

[48]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[49]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.

[50]  G. Vallone,et al.  Integrated photonic quantum gates for polarization qubits , 2011, Nature communications.

[51]  M. Kim,et al.  Simulation of quantum random walks using the interference of a classical field , 2003, quant-ph/0305008.

[52]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[53]  G. Guerreschi,et al.  Boson sampling for molecular vibronic spectra , 2014, Nature Photonics.

[54]  J. O'Brien,et al.  On the experimental verification of quantum complexity in linear optics , 2013, Nature Photonics.

[55]  Barry C. Sanders,et al.  Generalized Multiphoton Quantum Interference , 2014, 1403.3433.

[56]  Juan Miguel Arrazola,et al.  Quantum communication with coherent states and linear optics , 2014, 1406.7189.

[57]  Tilo Strutz,et al.  Data Fitting and Uncertainty: A practical introduction to weighted least squares and beyond , 2010 .

[58]  M. Akritas,et al.  Non‐parametric Estimation of the Residual Distribution , 2001 .

[59]  Terry L King A Guide to Chi-Squared Testing , 1997 .

[60]  Robert E. Davis,et al.  Statistics for the evaluation and comparison of models , 1985 .

[61]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.