Homoclinic orbits for a nonperiodic Hamiltonian system

Abstract In this paper we prove the existence and multiplicity of homoclinic orbits for first order Hamiltonian systems of the form z ˙ = J H z ( t , z ) , where H z is asymptotically linear at ∞ and is not assumed to be periodic.

[1]  É. Séré Looking for the Bernoulli shift , 1993 .

[2]  Yanheng Ding,et al.  Solutions of nonlinear Dirac equations , 2006 .

[3]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[4]  Louis Jeanjean,et al.  On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on ℝN , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[5]  Wenming Zou,et al.  Homoclinic Orbits for Asymptotically Linear Hamiltonian Systems , 2001 .

[6]  Nils Ackermann,et al.  On a periodic Schrödinger equation with nonlocal superlinear part , 2004 .

[7]  Yanheng Ding,et al.  On a nonlinear Schrödinger equation with periodic potential , 1999 .

[8]  Homoclinic Solutions of Hamiltonian Systems with Symmetry , 1999 .

[9]  Yanheng Ding,et al.  Deformation theorems on non‐metrizable vector spaces and applications to critical point theory , 2006 .

[10]  L. Jeanjean,et al.  A positive solution for an asymptotically linear elliptic problem on$\mathbb{R}^N$ autonomous at infinity , 2002 .

[11]  Ivar Ekeland,et al.  A variational approach to homolinic orbits in Hamiltonian systems , 1990 .

[12]  H. Hofer,et al.  First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems , 1990 .

[13]  Kazunaga Tanaka Homoclinic orbits in a first order superquadratic Hamiltonian system , 1991 .

[14]  Jean Bourgain,et al.  On nonlinear Schrödinger equations , 1998 .

[15]  M. Willem,et al.  Homoclinic orbits of a Hamiltonian system , 1999 .

[16]  David E. Edmunds,et al.  Spectral Theory and Differential Operators , 1987, Oxford Scholarship Online.

[17]  Charles A. Stuart,et al.  Axisymmetric TE-Modes in a Self-focusing Dielectric , 2005, SIAM J. Math. Anal..

[18]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[19]  Yanheng Ding,et al.  Bound states for semilinear Schrödinger equations with sign-changing potential , 2007 .

[20]  A POSITIVE SOLUTION FOR AN ASYMPTOTICALLY LINEAR ELLIPTIC PROBLEM ON R N AUTONOMOUS AT INFINITY ∗ , .

[21]  É. Séré Existence of infinitely many homoclinic orbits in Hamiltonian systems , 1992 .

[22]  Andrzej Szulkin,et al.  Generalized linking theorem with an application to a semilinear Schrödinger equation , 1998, Advances in Differential Equations.

[23]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .