On Handling Ephemeral Resource Constraints in Evolutionary Search

We consider optimization problems where the set of solutions available for evaluation at any given time t during optimization is some subset of the feasible space. This model is appropriate to describe many closed-loop optimization settings (i.e., where physical processes or experiments are used to evaluate solutions) where, due to resource limitations, it may be impossible to evaluate particular solutions at particular times (despite the solutions being part of the feasible space). We call the constraints determining which solutions are non-evaluable ephemeral resource constraints (ERCs). In this paper, we investigate two specific types of ERC: one encodes periodic resource availabilities, the other models commitment constraints that make the evaluable part of the space a function of earlier evaluations conducted. In an experimental study, both types of constraint are seen to impact the performance of an evolutionary algorithm significantly. To deal with the effects of the ERCs, we propose and test five different constraint-handling policies (adapted from those used to handle standard constraints), using a number of different test functions including a fitness landscape from a real closed-loop problem. We show that knowing information about the type of resource constraint in advance may be sufficient to select an effective policy for dealing with it, even when advance knowledge of the fitness landscape is limited.

[1]  Adam Prügel-Bennett,et al.  Learning the Large-Scale Structure of the MAX-SAT Landscape Using Populations , 2010, IEEE Transactions on Evolutionary Computation.

[2]  Nostrand Reinhold,et al.  the utility of using the genetic algorithm approach on the problem of Davis, L. (1991), Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York. , 1991 .

[3]  Joshua D. Knowles,et al.  Closed-loop, multiobjective optimization of analytical instrumentation: gas chromatography/time-of-flight mass spectrometry of the metabolomes of human serum and of yeast fermentations. , 2005, Analytical chemistry.

[4]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[5]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[6]  Allan Borodin,et al.  Online computation and competitive analysis , 1998 .

[7]  M. Friedman The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance , 1937 .

[8]  Joshua D. Knowles,et al.  Efficient discovery of anti-inflammatory small molecule combinations using evolutionary computing , 2011, Nature chemical biology.

[9]  D. Kell,et al.  Explanatory optimization of protein mass spectrometry via genetic search. , 2003, Analytical chemistry.

[10]  D. Finkel,et al.  CONVERGENCE ANALYSIS OF SAMPLING METHODS FOR PERTURBED LIPSCHITZ FUNCTIONS , 2008 .

[11]  Hans-Paul Schwefel,et al.  TWO-PHASE NOZZLE AND HOLLOW CORE JET EXPERIMENTS. , 1970 .

[12]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[13]  Joshua D. Knowles,et al.  On-Line Purchasing Strategies for an Evolutionary Algorithm Performing Resource-Constrained Optimization , 2010, PPSN.

[14]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[15]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[16]  H. Rabitz,et al.  Teaching lasers to control molecules. , 1992, Physical review letters.

[17]  G. E. Liepins,et al.  A Genetic Algorithm Approach to Multiple-Fault Diagnosis , 1991 .

[18]  Mark A. Bedau,et al.  Automated Discovery of Novel Drug Formulations Using Predictive Iterated High Throughput Experimentation , 2010, PloS one.

[19]  Carlos Artemio Coello-Coello,et al.  Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .

[20]  Ingo Rechenberg,et al.  Case studies in evolutionary experimentation and computation , 2000 .

[21]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[22]  Peter A. N. Bosman,et al.  Learning and anticipation in online dynamic optimization with evolutionary algorithms: the stochastic case , 2007, GECCO '07.

[23]  David E. Goldberg,et al.  Genetic Algorithms, Clustering, and the Breaking of Symmetry , 2000, PPSN.

[24]  O. M. Shir Niching in derandomized evolution strategies and its applications in quantum control , 2008 .

[25]  V. L. Anderson Evolutionary Operation : A Method for Increasing Industrial Productivity , 1970 .

[26]  Kenneth A. De Jong,et al.  Using Genetic Algorithms to Solve NP-Complete Problems , 1989, ICGA.

[27]  P. Koumoutsakos,et al.  Multiobjective evolutionary algorithm for the optimization of noisy combustion processes , 2002 .

[28]  Colin R. Reeves,et al.  Genetic Algorithms: Principles and Perspectives: A Guide to Ga Theory , 2002 .

[29]  Heinz Mühlenbein,et al.  Optimal Interaction of Mutation and Crossover in the Breeder Genetic Algorithm , 1993, ICGA.

[30]  Pierre Hansen,et al.  Algorithms for the maximum satisfiability problem , 1987, Computing.

[31]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[32]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[33]  Joshua D. Knowles Closed-loop evolutionary multiobjective optimization , 2009, IEEE Computational Intelligence Magazine.

[34]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[35]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[36]  J. Knowles,et al.  Ephemeral Resource Constraints in Optimization and Their Effects on Evolutionary Search , 2010 .

[37]  Joshua D. Knowles,et al.  Multiobjective evolutionary optimisation for surface-enhanced Raman scattering , 2010, Analytical and Bioanalytical Chemistry.

[38]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[39]  Jürgen Branke,et al.  Evolutionary Optimization in Dynamic Environments , 2001, Genetic Algorithms and Evolutionary Computation.

[40]  Joshua D. Knowles,et al.  Policy learning in resource-constrained optimization , 2011, GECCO '11.

[41]  Lawrence Davis,et al.  Adapting Operator Probabilities in Genetic Algorithms , 1989, ICGA.

[42]  Adrian Thompson,et al.  Hardware evolution - automatic design of electronic circuits in reconfigurable hardware by artificial evolution , 1999, CPHC/BCS distinguished dissertations.

[43]  Terry Speed Statistics for Experimenters: Design, Innovation, and Discovery (2nd ed.) , 2006 .

[44]  Joshua D. Knowles,et al.  Closed-loop, multiobjective optimization of two-dimensional gas chromatography/mass spectrometry for serum metabolomics. , 2007, Analytical chemistry.

[45]  D. Cliff,et al.  NKalpha: Non-uniform epistatic interactions in an extended NK model , 2008 .

[46]  Hans-Paul Schwefel,et al.  Superimposing direct search methods for parameter optimization onto dynamic simulation models , 1978, WSC '78.

[47]  J. S. Hunter,et al.  Statistics for Experimenters: Design, Innovation, and Discovery , 2006 .

[48]  Ofer M. Shir,et al.  Evolutionary multi-objective quantum control experiments with the covariance matrix adaptation , 2009, GECCO '09.

[49]  Trung Thanh Nguyen,et al.  Continuous dynamic optimisation using evolutionary algorithms , 2011 .

[50]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[51]  Ofer M. Shir,et al.  Experimental optimization by evolutionary algorithms , 2010, GECCO '10.