Heuristic and metaheuristic optimization techniques with application to power systems

The development of modern wide-area power systems, as well as recent trends towards the creation of sustainable energy systems have given birth to complex studies addressing technical, but also economical and environmental, aspects related to simple or multi-objective optimization problems. Recently, heuristic and metaheuristic approaches that apply combinations of different heuristics with or without traditional search and optimization techniques were proposed to solve such problems. This paper provides basic knowledge about most widely used (meta)heuristic optimization techniques, and their application in optimization problems in power systems.

[1]  Craig A. Tovey,et al.  On Honey Bees and Dynamic Server Allocation in Internet Hosting Centers , 2004, Adapt. Behav..

[2]  G. Chicco,et al.  Support Vector Clustering of Electrical Load Pattern Data , 2009, IEEE Transactions on Power Systems.

[3]  Eric A. Hansen,et al.  Breadth-first heuristic search , 2004, Artif. Intell..

[4]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[5]  Rina Dechter,et al.  Generalized best-first search strategies and the optimality of A* , 1985, JACM.

[6]  Ovidiu Ivanov,et al.  SYNCHRONIZED PHASOR MEASUREMENTS FOR STATE ESTIMATION , 2009 .

[7]  John R. Koza,et al.  Genetic Programming II , 1992 .

[8]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[9]  Mihai Gavrilas,et al.  Application of Honey Bee Mating Optimization algorithm to load profile clustering , 2010, 2010 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications.

[10]  S. K. Goswami,et al.  Combined Heuristic and Evolutionary approach for Reactive Power Planning Problem , 2007 .

[11]  Alan S. Perelson,et al.  The immune system, adaptation, and machine learning , 1986 .

[12]  John R. Koza,et al.  Genetic programming (videotape): the movie , 1992 .

[13]  Vidroha Debroy,et al.  Genetic Programming , 1998, Lecture Notes in Computer Science.

[14]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[15]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[16]  Ovidiu Ivanov LOAD PROFILING BY SELF ORGANIZATION WITH AFFINITY CONTROL STRATEGY , 2008 .

[17]  G. Chicco,et al.  Comparisons among clustering techniques for electricity customer classification , 2006, IEEE Transactions on Power Systems.

[18]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[19]  Wheeler Ruml,et al.  Best-First Heuristic Search for Multi-Core Machines , 2009, IJCAI.

[20]  Jesfis Peral,et al.  Heuristics -- intelligent search strategies for computer problem solving , 1984 .

[21]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[22]  Judea Pearl,et al.  Heuristics : intelligent search strategies for computer problem solving , 1984 .

[23]  M. Gavrilas,et al.  Load profiling with fuzzy self-organizing algorithms , 2008, 2008 9th Symposium on Neural Network Applications in Electrical Engineering.

[24]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[25]  R. Fletcher Practical Methods of Optimization , 1988 .

[26]  C. W. Tate Solve it. , 2005, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[27]  M.A.N. Guimaraes,et al.  Reconfiguration of distribution systems for stability margin enhancement using tabu search , 2004, 2004 International Conference on Power System Technology, 2004. PowerCon 2004..

[28]  Hwa-Seok Lee,et al.  Application of parallel particle swarm optimization on power system state estimation , 2009, 2009 Transmission & Distribution Conference & Exposition: Asia and Pacific.

[29]  Ovidiu Ivanov,et al.  ENHANCED PARTICLE SWARM OPTIMIZATION METHOD FOR POWER LOSS REDUCTION IN DISTRIBUTION SYSTEMS , 2007 .

[30]  M. Gavrilas,et al.  Comparison of Neural and Evolutionary Approaches to Peak Load Estimation in Distribution Systems , 2005, EUROCON 2005 - The International Conference on "Computer as a Tool".

[31]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[32]  David Furcy,et al.  Incremental Heuristic Search in AI , 2004, AI Mag..

[33]  Roger Fletcher,et al.  Practical methods of optimization; (2nd ed.) , 1987 .

[34]  A. G. Expósito,et al.  Power system state estimation : theory and implementation , 2004 .

[35]  F. Box,et al.  A heuristic technique for assigning frequencies to mobile radio nets , 1978, IEEE Transactions on Vehicular Technology.

[36]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[37]  R. Srinivasa Rao,et al.  A New Heuristic Approach for Optimal Network Reconfiguration in Distribution Systems , 2009 .

[38]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[39]  R. Lewontin ‘The Selfish Gene’ , 1977, Nature.

[40]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[41]  Eric A. Hansen,et al.  Beam-Stack Search: Integrating Backtracking with Beam Search , 2005, ICAPS.

[42]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[43]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[44]  Hiroyuki Mori,et al.  A Hybrid Method of EPSO and TS for FACTS Optimal Allocation in Power Systems , 2006, 2006 IEEE International Conference on Systems, Man and Cybernetics.

[45]  Kenneth A. De Jong,et al.  Genetic algorithms: A 10 Year Perspective , 1985, ICGA.