A Numerical Comparison of an Isogeometric and a Classical Higher-Order Approach to the Electric Field Integral Equation

In this paper, we advocate a novel spline-based isogeometric approach for boundary elements and its efficient implementation. We compare solutions obtained by both an isogeometric approach, and a classical parametric higher-order approach via Raviart-Thomas elements to the solution of the electric field integral equation; i.e., the solution to an electromagnetic scattering problem, promising high convergence orders w.r.t. pointwise error. We discuss both, the obtained accuracy per DOF, as well as the effort required to solve the corresponding system iteratively, on three numerical examples of varying complexity.

[1]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[2]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[3]  S. Rjasanow,et al.  Matrix valued adaptive cross approximation , 2017 .

[4]  Stefan Kurz,et al.  Fast Boundary Element Methods in Computational Electromagnetism , 2007 .

[5]  Lucy Weggler High order boundary element methods , 2011 .

[6]  Thomas-Peter Fries,et al.  Fast Isogeometric Boundary Element Method based on Independent Field Approximation , 2014, ArXiv.

[7]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[8]  Stefan Kurz,et al.  A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems , 2017, 1708.09162.

[9]  Zeger Bontinck,et al.  Recent Advances of Isogeometric Analysis in Computational Electromagnetics , 2017, ArXiv.

[10]  Rafael Vázquez Hernández,et al.  An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations , 2017, J. Comput. Phys..

[11]  Andrew F. Peterson Mapped Vector Basis Functions for Electromagnetic Integral Equations , 2006, Mapped Vector Basis Functions for Electromagnetic Integral Equations.

[12]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[13]  Thomas F. Eibert,et al.  A hierarchical preconditioner for the electric field integral equation on unstructured meshes based on primal and dual Haar bases , 2017, J. Comput. Phys..

[14]  Annalisa Buffa,et al.  Isogeometric analysis for electromagnetic scattering problems , 2014, 2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO).

[15]  Olaf Steinbach Boundary Value Problems , 2008 .

[16]  Helmut Harbrecht,et al.  Comparison of fast boundary element methods on parametric surfaces , 2013 .

[17]  Giancarlo Sangalli,et al.  Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..

[18]  R. Hiptmair,et al.  Galerkin Boundary Element Methods for Electromagnetic Scattering , 2003 .

[19]  Helmut Harbrecht,et al.  An interpolation‐based fast multipole method for higher‐order boundary elements on parametric surfaces , 2016 .

[20]  Sebastian Schöps,et al.  Multipatch approximation of the de Rham sequence and its traces in isogeometric analysis , 2018, Numerische Mathematik.