On the evaluation of solution concepts

It is proposed that solution concepts for games should be evaluated in a way that is analogous to the way a logic is evaluated by a model theory for the language. A solution concept defines a set of strategy profiles, as a logic defines a set of theorems. A model theoretic analysis for a game defines a class of models, which are abstract representations of particular plays of the game. Given an appropriate definition of a model, one can show that various solution concepts are characterized by intuitively natural classes of models in the same sense that the set of theorems of a logic is characterized by a class of models of the language. Sketches of characterization results of this kind are given for rationalizability, Nash equilibrium, and for a refinement of rationalizability —strong rationalizability — that has some features of an equilibrium concept. It is shown that strong rationalizability is equivalent to Nash equilibrium in perfect information games. Extensions of the model theoretic framework that represent belief revision and that permit the characterization of other solution concepts are explored informally.