A Generalization of Fibonacci Far-Difference Representations and Gaussian Behavior
暂无分享,去创建一个
Steven J. Miller | Philippe Demontigny | Archit Kulkarni | Umang Varma | Thao Do | Philippe Demontigny | Thao T. Do | Archit Kulkarni | Umang Varma
[1] Robert F. Tichy,et al. Corrigendum to “generalized Zeckendorf expansions” , 1994 .
[2] D. E. Daykin. Representation of Natural Numbers as Sums of Generalised Fibonacci Numbers , 1960 .
[3] Hannah Alpert,et al. Differences of Multiple Fibonacci Numbers , 2009 .
[4] Steven J. Miller,et al. Gaussian Behavior in Generalized Zeckendorf Decompositions , 2014 .
[5] Michael Drmota,et al. The distribution of the sum-of-digits function , 1998 .
[6] Robert F. Tichy,et al. Contributions to digit expansions with respect to linear recurrences , 1990 .
[7] Steven J. Miller,et al. On the number of summands in Zeckendorf decompositions , 2010, 1008.3204.
[8] Edward B. Burger,et al. A generalization of a theorem of Lekkerkerker to Ostrowski's decomposition of natural numbers , 2012 .
[9] A COUNTING BASED PROOF OF THEGENERALIZED ZECKENDORF ' S THEOREMTam , 2022 .
[10] Mario Lamberger,et al. Distribution properties of digital expansions arising from linear recurrences , 2003 .
[11] C. G. Lekkerkerker,et al. Voorstelling van natuurlijke getallen door een som van getallen van fibonacci , 1951 .
[12] Robert F. Tichy,et al. Generalized Zeckendorf expansions , 1994 .
[13] Grabner,et al. The distribution of the sum-of-digits function , 1998 .
[14] Wolfgang Steiner. Parry expansions of polynomial sequences. , 2002 .
[15] Steven J. Miller,et al. From Fibonacci numbers to central limit type theorems , 2010, J. Comb. Theory A.
[16] Steven J. Miller,et al. The Average Gap Distribution for Generalized Zeckendorf Decompositions , 2012, The Fibonacci Quarterly.