Comparison of the statolith structures of Chironex fleckeri (Cnidaria, Cubozoa) and Periphylla periphylla (Cnidaria, Scyphozoa): a phylogenetic approach

The rhopalia and statocysts of Periphylla periphylla (Péron and Lesueur in Ann Mus Hist Nat Marseille 14:316–366,1809) and Chironex fleckeri Southcott (Aust J Mar Freshw Res 7(2):254–280 1956) were examined histologically and showed several homologous characteristics. Differences in sensory area distribution could be connected to a slightly different functionality of equilibrium sensing. In P. periphylla, the statoliths (crystals) grow independently of each other; whereas in C. fleckeri, one large crystal covers the smaller ones. The structures of both statoliths were examined in detail with single-crystal diffraction, microtomography and diffraction contrast tomography. The single compact statolith of C. fleckeri consisted of bassanite as was previously known only for other rhopaliophoran medusae. An origin area with several small oligocrystals was located in the centre of the cubozoan statolith. The origin areas and the accretion of statoliths are similar in both species. Our results lead to the assumption that the single bassanite statolith of C. fleckeri (Cnidaria, Cubozoa) is a progression of the scyphozoan multiplex statolith. It is therefore suggested that the Cubozoa are derived from a scyphozoan ancestor and are a highly developed taxa within the Rhopaliophora.

[1]  C. Philput,et al.  Graviceptor development in jellyfish ephyrae in space and on Earth. , 1994, Advances in space research : the official journal of the Committee on Space Research.

[2]  Dale R. Calder LIFE HISTORY OF THE CANNONBALL JELLYFISH, STOMOLOPHUS MELEAGRIS L. AGASSIZ, 1860 (SCYPHOZOA, RHIZOSTOMIDA) , 1982 .

[3]  P. Tardent,et al.  Ultrastructure of mechanoreceptors of the polyp coryne pintneri (Hydrozoa, Athecata). , 1972, Experimental cell research.

[4]  J. Seymour,et al.  Growth and age determination of the tropical Australian cubozoan Chiropsalmus sp. , 2004 .

[5]  C. Cutress,et al.  Life History of Carybdea Alata Reynaud, 1830 (Cubomedusae) , 1976 .

[6]  Matthias Epple,et al.  Calcium sulfate hemihydrate is the inorganic mineral in statoliths of Scyphozoan medusae (Cnidaria). , 2005, Dalton transactions.

[7]  P. M. Ralph Tetraplatia, a coronate scyphomedusan , 1960, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[8]  M. Epple,et al.  Statoliths of Calcium Sulfate Hemihydrate are used for Gravity Sensing in Rhopaliophoran Medusae (Cnidaria) , 2008 .

[9]  C. Biela,et al.  Fine structure of touch-plates in the scyphomedusan Aurelia aurita. , 1982, Journal of ultrastructure research.

[10]  J. Buffière,et al.  Three-dimensional grain mapping by x-ray diffraction contrast tomography and the use of Friedel pairs in diffraction data analysis. , 2009, The Review of scientific instruments.

[11]  Andreas Schreyer,et al.  Characterization of polyurethane scaffolds using synchrotron radiation based computed microtomography , 2004, SPIE Optics + Photonics.

[12]  S. Ueno,et al.  Fine growth rings found in statolith of a cubomedusa Carybdea rastoni , 1995 .

[13]  L. Salvini-Plawen On the origin and evolution of the lower Metazoa , 2009 .

[14]  A. Collins,et al.  Exceptionally Preserved Jellyfishes from the Middle Cambrian , 2007, PloS one.

[15]  V. Hartenstein,et al.  Development of the rhopalial nervous system in Aurelia sp.1 (Cnidaria, Scyphozoa) , 2009, Development Genes and Evolution.

[16]  Anders Garm,et al.  Structure and optics of the eyes of the box jellyfish Chiropsella bronzie , 2009, Journal of Comparative Physiology A.

[17]  S. A. Gordon,et al.  Gravity and the organism , 1971 .

[18]  R. Southcott Studies on Australian Cubomedusae, Including a New Genus and Species Apparently Harmful to Man , 1956 .

[19]  R. Satterlie Neuronal control of swimming in jellyfish: a comparative story , 2002 .

[20]  B. Tanner X-Ray Diffraction Topography , 1976 .

[21]  G A Horridge,et al.  Statocysts of medusae and evolution of stereocilia. , 1969, Tissue & cell.

[22]  B. Schierwater,et al.  Solution to the phylogenetic enigma of Tetraplatia, a worm-shaped cnidarian , 2006, Biology Letters.

[23]  U. Thurm,et al.  Variations of concentric hair cells in a Cnidarian sensory epithelium (Coryne tubulosa) , 2001, The Journal of comparative neurology.

[24]  O. Maas Die Scyphomedusen der Siboga-Expedition , 1903 .

[25]  Alfred Kaestner,et al.  Lehrbuch der Speziellen Zoologie , 1969 .

[26]  Heinrich Riesemeier,et al.  The micro-imaging station of the TopoTomo beamline at the ANKA synchrotron light source , 2009 .

[27]  C. Ettensohn,et al.  The Morphogenesis and Biomineralization of the Sea Urchin Larval Skeleton , 2008 .

[28]  G. Horridge Some recently discovered underwater vibration receptors in invertebrates , 1966 .

[29]  Felix Beckmann,et al.  New developments in attenuation and phase-contrast microtomography using synchrotron radiation with low and high photon energies , 1999, Optics & Photonics.

[30]  G. Laska-Mehnert Cytologische Veränderungen während der Metamorphose des CubopolypenTripedalia cystophora (Cubozoa, Carybdeidae) in die Meduse , 1985, Helgoländer Meeresuntersuchungen.

[31]  A. Collins,et al.  Cladistic analysis of Medusozoa and cnidarian evolution , 2005 .

[32]  D. M. Chapman X-RAY Microanalysis of Selected Coelenterate Statoliths , 1985, Journal of the Marine Biological Association of the United Kingdom.

[33]  M. Arai,et al.  A Functional Biology of Scyphozoa , 1996, Springer Netherlands.

[34]  G. Horridge,et al.  Naked Axons and Symmetrical Synapses in Coelenterates , 1964 .

[35]  Peter Ekström,et al.  The bilaterally symmetric rhopalial nervous system of box jellyfish , 2006 .

[36]  Andrew King,et al.  X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. II. The combined case , 2008 .

[37]  L. Salvini-Plawen,et al.  Staging and induction of medusa metamorphosis in Carybdea marsupialis (Cnidaria, Cubozoa) , 2002 .

[38]  E. R. Lankester Das System der Medusen; erster Theil einer Monographie der Medusen , 1880, Nature.

[39]  F. S. Conant,et al.  Physiology and Histology of the Cubomedusae, Including Dr. F.S. Conant's Notes on the Physiology , 2013 .

[40]  M. Coates,et al.  Visual Ecology and Functional Morphology of Cubozoa (Cnidaria)1 , 2003, Integrative and comparative biology.

[41]  O. Hertwig,et al.  Das Nervensystem und die Sinnesorgane der Medusen , 1878 .

[42]  R. Satterlie,et al.  Why do cubomedusae have only four swim pacemakers? , 2001, The Journal of experimental biology.

[43]  Einführung in die Elektronenmikroskopie (EM) , 1985 .

[44]  D. Nilsson,et al.  Rhopalia are integrated parts of the central nervous system in box jellyfish , 2006, Cell and Tissue Research.

[45]  D B Spangenberg,et al.  Touch-plate and statolith formation in graviceptors of ephyrae which developed while weightless in space. , 1996, Scanning microscopy.

[46]  B. Werner Bau und Lebensgeschichte des Polypen vonTripedalia cystophora (Cubozoa, class. nov., Carybdeidae) und seine Bedeutung für die Evolution der Cnidaria , 1975, Helgoländer Wissenschaftliche Meeresuntersuchungen.

[47]  H. Adam,et al.  Arbeitsmethoden der makroskopischen und mikroskopischen Anatomie : ein Laboratoriumshandbuch für Biologen, Mediziner und technische Hilfskräfte , 1964 .

[48]  Vicki J. Martin Photoreceptors of cubozoan jellyfish , 2004 .

[49]  M. Hündgen,et al.  Die Ultrastruktur des neuromuskulären Systems der Medusen von Tripedalia cystophora und Carybdea marsupialis (Coelenterata, Cubozoa) , 1984, Zoomorphology.

[50]  C. W. Beck,et al.  Calcium Sulfate Dihydrate Statoliths in Aurelia , 1968 .

[51]  R. Nesper,et al.  Bestimmung der Kristallstruktur von CaSO4(H2O)0,5 mit Röntgenbeugungsmethoden und mit Potentialprofil-Rechnungen , 1993 .

[52]  D. Spangenberg Rhopalium development in Aurelia aurita ephyrae , 1991, Hydrobiologia.

[53]  M. Epple,et al.  Calcium sulfate hemihydrate (bassanite) statoliths in the cubozoan Carybdea sp. , 2006 .

[54]  Ulrich Bonse,et al.  X-ray computed microtomography (μCT) using synchrotron radiation (SR) , 1996 .

[55]  G. Jarms,et al.  Life cycle of Carybdea marsupialis Linnaeus, 1758 (Cubozoa, Carybdeidae) reveals metamorphosis to be a modified strobilation , 2005 .

[56]  Ilka Straehler-Pohl Die Phylogenie der Rhopaliophora (Scyphozoa und Cubozoa) und die Paraphylie der 'Rhizostomeae' , 2009 .

[57]  D. Nilsson,et al.  Immunohistochemical evidence for multiple photosystems in box jellyfish , 2008, Cell and Tissue Research.

[58]  Naomasa Oshiro,et al.  The relationship between fine rings in the statolith and growth of the cubomedusa Chiropsalmus quadrigatus (Cnidaria: Cubozoa) from Okinawa Island, Japan , 2003 .

[59]  M. Epple,et al.  Calcium sulfate hemihydrate in statoliths of deep-sea medusae , 2002 .

[60]  A. Collins Phylogeny of Medusozoa and the evolution of cnidarian life cycles , 2002 .

[61]  D. K. Hofmann,et al.  Strobilation, budding and initiation of scyphistoma morphogenesis in the rhizostome Cassiopea andromeda (Cnidaria: Scyphozoa) , 1978 .

[62]  K. Diebel Hartmann, Gerd: Ostracoda. In: Dr. H. G. BRONNS Klassen und Ordnungen des Tierreichs. 5. Band: Arthropoda, I. Abteilung: Crustacea, 2. Buch, IV. Teil. — Leipzig (Akademische Verlagsgesellschaft Geest & Portig K.‐G.) , 1970 .

[63]  G. Matsumoto Observations on the anatomy and behavior of the cubozoan Carybdea rastonni Haacke , 1995 .

[64]  H. Tiemann,et al.  Organ-like gonads, complex oocyte formation, and long-term spawning in Periphylla periphylla (Cnidaria, Scyphozoa, Coronatae) , 2010 .

[65]  F. Beckmann,et al.  Comparison of different methods for the preparation of porous bone substitution materials and structural investigations by synchrotron μ‐computer tomography , 2004 .

[66]  F. Mayer,et al.  Präparationsmethodik in der Elektronenmikroskopie , 1985 .

[67]  F. S. Russell,et al.  The viviparous scyphomedusa Stygiomedusa fabulosa Russell , 1960, Journal of the Marine Biological Association of the United Kingdom.

[68]  Matthias Epple,et al.  Application of synchrotron-radiation-based computer microtomography (SRμCT) to selected biominerals: embryonic snails, statoliths of medusae, and human teeth , 2005, JBIC Journal of Biological Inorganic Chemistry.

[69]  C. L. Singla,et al.  Statocysts of hydromedusae , 2004, Cell and Tissue Research.

[70]  R. P. Bigelow A comparison of the sense‐organs in medusae of the family Pelagidae , 1910 .

[71]  BERNHARD WERNER,et al.  Life Cycle of Tripedalia cystophora Conant (Cubomedusae) , 1971, Nature.

[72]  P. Schuchert Phylogenetic analysis of the Cnidaria , 2009 .

[73]  S. Holst,et al.  Life cycle of the rhizostome jellyfish Rhizostoma octopus (L.) (Scyphozoa, Rhizostomeae), with studies on cnidocysts and statoliths , 2007 .

[74]  E. A. Schafer,et al.  Observations on the Nervous System of Aurelia Aurita , 1878 .

[75]  B. Werner NEW INVESTIGATIONS ON SYSTEMATICS AND EVOLUTION OF THE CLASS SCYPHOZOA AND THE PHYLUM CNIDARIA , 1973 .

[76]  E. Vanhöffen Die acraspeden Medusen der deutschen Tiefsee-Expedition 1898-1899. Mit Tafel I-VIII. , 1902 .

[77]  G. Horridge Primitive examples of gravity receptors and their evolution , 1968 .

[78]  Dale R. Calder Laboratory observations on the life history of Rhopilema verrilli (Scyphozoa: Rhizostomeae) , 1973 .