Stochastic resonance in binary composite hypothesis-testing problems in the Neyman-Pearson framework

Performance of some suboptimal detectors can be enhanced by adding independent noise to their inputs via the stochastic resonance (SR) effect. In this paper, the effects of SR are studied for binary composite hypothesis-testing problems. A Neyman-Pearson framework is considered, and the maximization of detection performance under a constraint on the maximum probability of false-alarm is studied. The detection performance is quantified in terms of the sum, the minimum, and the maximum of the detection probabilities corresponding to possible parameter values under the alternative hypothesis. Sufficient conditions under which detection performance can or cannot be improved are derived for each case. Also, statistical characterization of optimal additive noise is provided, and the resulting false-alarm probabilities and bounds on detection performance are investigated. In addition, optimization theoretic approaches to obtaining the probability distribution of optimal additive noise are discussed. Finally, a detection example is presented to investigate the theoretical results.

[1]  H. Vincent Poor,et al.  Noise Enhanced Hypothesis-Testing in the Restricted Bayesian Framework , 2010, IEEE Transactions on Signal Processing.

[2]  Toshio Fukuda,et al.  A PSO-based Mobile Sensor Network for Odor Source Localization in Dynamic Environment: Theory, Simulation and Measurement , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[3]  L. Kish,et al.  SIGNAL-TO-NOISE RATIO GAIN IN NON-DYNAMICAL AND DYNAMICAL BISTABLE STOCHASTIC RESONATORS , 2002, The Random and Fluctuating World.

[4]  Ioannis Karatzas,et al.  GENERALIZED NEYMAN-PEARSON LEMMA VIA CONVEX DUALITY ⁄ , 2001 .

[5]  Pramod K. Varshney,et al.  Theory of the Stochastic Resonance Effect in Signal Detection: Part I—Fixed Detectors , 2007, IEEE Transactions on Signal Processing.

[6]  Pramod K. Varshney,et al.  Reducing Probability of Decision Error Using Stochastic Resonance , 2006, IEEE Signal Processing Letters.

[7]  Bart Kosko,et al.  Adaptive stochastic resonance in noisy neurons based on mutual information , 2004, IEEE Transactions on Neural Networks.

[8]  Abbas Jamalipour,et al.  Wireless communications , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[9]  Edite M. G. P. Fernandes,et al.  Optimization of nonlinear constrained particle swarm , 2006 .

[10]  Mark A. Richards,et al.  Fundamentals of Radar Signal Processing , 2005 .

[11]  Bart Kosko,et al.  Stochastic resonance in noisy threshold neurons , 2003, Neural Networks.

[12]  François Chapeau-Blondeau,et al.  Stochastic resonance and improvement by noise in optimal detection strategies , 2005, Digit. Signal Process..

[13]  M. Neely,et al.  The Optimality of Two Prices : Maximizing Revenue in a Stochastic Network , 2007 .

[14]  Pramod K. Varshney,et al.  Theory of the Stochastic Resonance Effect in Signal Detection—Part II: Variable Detectors , 2007, IEEE Transactions on Signal Processing.

[15]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[16]  Pierre-Olivier Amblard,et al.  Stochastic resonance in discrete time nonlinear AR(1) models , 1999, IEEE Trans. Signal Process..

[17]  Marco Tomassini,et al.  Evolutionary Algorithms , 1995, Towards Evolvable Hardware.

[18]  Tom E. Bishop,et al.  Blind Image Restoration Using a Block-Stationary Signal Model , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[19]  Zbigniew Michalewicz,et al.  Evolutionary algorithms , 1997, Emerging Evolutionary Algorithms for Antennas and Wireless Communications.

[20]  Bart Kosko,et al.  Robust stochastic resonance for simple threshold neurons. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Santucci,et al.  Stochastic resonance in bistable systems. , 1989, Physical review letters.

[22]  Pramod K. Varshney,et al.  Improving Sequential Detection Performance Via Stochastic Resonance , 2008, IEEE Signal Processing Letters.

[23]  Pierre-Olivier Amblard,et al.  Can stochastic resonance be used in detection? , 2000, 2000 10th European Signal Processing Conference.

[24]  Yifan Chen,et al.  Ultra-Wideband Source Localization Using a Particle-Swarm-Optimized Capon Estimator from a Frequency-Dependent Channel Modeling Viewpoint , 2005, EURASIP J. Adv. Signal Process..

[25]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[26]  P Hänggi,et al.  Stochastic resonance in ion channels characterized by information theory. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  Dimitri P. Bertsekas,et al.  Convex Analysis and Optimization , 2003 .

[28]  S. Kay,et al.  Can detectability be improved by adding noise? , 2000, IEEE Signal Processing Letters.

[29]  Pramod K. Varshney,et al.  Noise Enhanced Nonparametric Detection , 2009, IEEE Transactions on Information Theory.

[30]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[31]  David G. Stork,et al.  Pattern Classification , 1973 .

[32]  François Chapeau-Blondeau,et al.  Stochastic resonance in the information capacity of a nonlinear dynamic system , 1998 .

[33]  Pierre-Olivier Amblard,et al.  On the use of stochastic resonance in sine detection , 2002, Signal Process..

[34]  Sinan Gezici,et al.  On the Restricted Neyman–Pearson Approach for Composite Hypothesis-Testing in Presence of Prior Distribution Uncertainty , 2011, IEEE Transactions on Signal Processing.

[35]  A. Sutera,et al.  The mechanism of stochastic resonance , 1981 .

[36]  Pierre-Olivier Amblard,et al.  Stochastic resonance in locally optimal detectors , 2003, IEEE Trans. Signal Process..

[37]  G. V. Anand,et al.  Design of detectors based on stochastic resonance , 2003, Signal Process..

[38]  Gregoire Nicolis,et al.  Stochastic resonance , 2007, Scholarpedia.

[39]  A.H. Tewfik,et al.  Detection of weak signals using adaptive stochastic resonance , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[40]  Yizhen Zhang,et al.  Particle swarm optimization for unsupervised robotic learning , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[41]  Zoltan Gingl,et al.  A stochastic resonator is able to greatly improve signal-to- noise ratio , 1996 .

[42]  C. Pugh Real Mathematical Analysis , 2003 .

[43]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[44]  Michael N. Vrahatis,et al.  Particle Swarm Optimization Method for Constrained Optimization Problems , 2002 .

[45]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[46]  Peter Sinčák,et al.  Intelligent technologies - theory and applications : new trends in intelligent technologies , 2002 .

[47]  Derek Abbott,et al.  A review of stochastic resonance: circuits and measurement , 2002, IEEE Trans. Instrum. Meas..

[48]  Yuan Ping,et al.  Particle swarm optimization for base station placement in mobile communication , 2004, IEEE International Conference on Networking, Sensing and Control, 2004.

[49]  Sinan Gezici,et al.  Noise Enhanced $M$-ary Composite Hypothesis-Testing in the Presence of Partial Prior Information , 2011, IEEE Transactions on Signal Processing.

[50]  Pramod K. Varshney,et al.  Approaching Near Optimal Detection Performance via Stochastic Resonance , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[51]  Pramod K. Varshney,et al.  Noise Enhanced Parameter Estimation , 2008, IEEE Transactions on Signal Processing.

[52]  François Chapeau-Blondeau Stochastic Resonance and Optimal Detection of Pulse Trains by Threshold Devices , 1999, Digit. Signal Process..

[53]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[54]  Sinan Gezici,et al.  On the Improvability and Nonimprovability of Detection via Additional Independent Noise , 2009, IEEE Signal Processing Letters.

[55]  Russell C. Eberhart,et al.  Solving Constrained Nonlinear Optimization Problems with Particle Swarm Optimization , 2002 .

[56]  Chongwu Zhou,et al.  Noise-Enhanced Detection of Subthreshold Signals With Carbon Nanotubes , 2006, IEEE Transactions on Nanotechnology.

[57]  N. Stocks,et al.  Suprathreshold stochastic resonance in multilevel threshold systems , 2000, Physical review letters.

[58]  Ioannis Karatzas,et al.  Testing composite hypotheses via convex duality , 2010 .

[59]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[60]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization , 1999, Evolutionary Computation.

[61]  H. Vincent Poor,et al.  An introduction to signal detection and estimation (2nd ed.) , 1994 .

[62]  Bulsara,et al.  Signal detection statistics of stochastic resonators. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[63]  Ashok Patel,et al.  Optimal Noise Benefits in Neyman–Pearson and Inequality-Constrained Statistical Signal Detection , 2009, IEEE Transactions on Signal Processing.