Modelling of fuel cells using multi-domain VHDL-AMS language

This study presents a IEEE standard Very High Speed Integrated Circuit Hardware Description Language-Analog and Mixed-Signal Extension (VHDL-AMS) modelling of a complex multi-domain energy conversion system: a fuel cell stack. A comparative study between the different modelling approaches (bond graphs, electrical equivalent circuits) is given to show the great advantages of the VHDL-AMS language in the design process of fuel cell systems. The modelling approach allows the design team to split the work into several parts (concurrent engineering) and validate each part independently. The fuel cell stack model fits the experimental results. It is able to predict the voltage and the power of the fuel cell with a good accuracy taking into account the water content of the membrane. This last point is really important to design the air supply system (compressor and humidifier) and its associated control.

[1]  Anna G. Stefanopoulou,et al.  Current Management in a Hybrid Fuel Cell Power System: A Model-Predictive Control Approach , 2006, IEEE Transactions on Control Systems Technology.

[2]  R. Byron Bird,et al.  Calculation of the diffusion coefficient of dilute gases and of the self‐diffusion coefficient of dense gases , 1958 .

[3]  Remi Saisset,et al.  Bond Graph model of a PEM fuel cell , 2006 .

[4]  M.S. Alam,et al.  Dynamic modeling, design, and simulation of a combined PEM fuel cell and ultracapacitor system for stand-alone residential applications , 2006, IEEE Transactions on Energy Conversion.

[5]  Mark W. Verbrugge,et al.  A Mathematical Model of the Solid‐Polymer‐Electrolyte Fuel Cell , 1992 .

[6]  J. Weidner,et al.  Diffusion of water in Nafion 115 membranes , 2000 .

[7]  M.H. Nehrir,et al.  Control of PEM fuel cell distributed generation systems , 2006, IEEE Transactions on Energy Conversion.

[8]  S. R. Shaw,et al.  A dynamic PEM fuel cell model , 2006, IEEE Transactions on Energy Conversion.

[9]  Pierre R. Roberge,et al.  Development and application of a generalised steady-state electrochemical model for a PEM fuel cell , 2000 .

[10]  J. C. Amphlett,et al.  A model predicting transient responses of proton exchange membrane fuel cells , 1996 .

[11]  Xianguo Li,et al.  Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding , 2000 .

[12]  R. O’Hayre,et al.  Fuel Cell Fundamentals , 2005 .

[13]  Ernst Christen,et al.  Vhdl-ams---a hardware description language for analog and mixed-signal applications , 1999 .

[14]  Norman Munroe,et al.  Review and comparison of approaches to proton exchange membrane fuel cell modeling , 2005 .

[15]  M.H. Nehrir,et al.  Dynamic models and model validation for PEM fuel cells using electrical circuits , 2005, IEEE Transactions on Energy Conversion.

[16]  Peter J. Ashenden,et al.  The System Designer's Guide to VHDL-AMS , 2002 .

[17]  T. Springer,et al.  A Comparative Study of Water Uptake By and Transport Through Ionomeric Fuel Cell Membranes , 1993 .

[18]  Anna G. Stefanopoulou,et al.  Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design , 2004 .

[19]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[20]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[21]  Thomas F. Fuller,et al.  Experimental Determination of the Transport Number of Water in Nafion 117 Membrane , 1992 .

[22]  Marcelo Godoy Simões,et al.  Simulation of fuel-cell stacks using a computer-controlled power rectifier with the purposes of actual high-power injection applications , 2003 .

[23]  Felix A. Farret,et al.  Integration of alternative sources of energy , 2006 .

[24]  Atilla Biyikoglu,et al.  Review of proton exchange membrane fuel cell models , 2005 .

[25]  Hussein Baher,et al.  Analog & digital signal processing , 1990 .

[26]  François Pêcheux,et al.  VHDL-AMS and Verilog-AMS as alternative hardware description languages for efficient modeling of multidiscipline systems , 2005, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[27]  Kwang Y. Lee,et al.  Development of a stack simulation model for control study on direct reforming molten carbonate fuel cell power plant , 1999 .

[28]  A.G. Stefanopoulou,et al.  Control of fuel cell breathing , 2004, IEEE Control Systems.