GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign

Abstract. The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorological Satellite (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements made to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm together with validation results during the Distributed Regional Aerosol Gridded Observation Networks – Northeast Asia 2012 campaign (DRAGON-NE Asia 2012 campaign). The evaluation during the spring season over East Asia is important because of high aerosol concentrations and diverse types of Asian dust and haze. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single-scattering albedo (SSA) at 440 nm, Angstrom exponent (AE) between 440 and 860 nm, and aerosol type. The aerosol models are created based on a global analysis of the Aerosol Robotic Networks (AERONET) inversion data, and covers a broad range of size distribution and absorptivity, including nonspherical dust properties. The Cox–Munk ocean bidirectional reflectance distribution function (BRDF) model is used over ocean, and an improved minimum reflectance technique is used over land. Because turbid water is persistent over the Yellow Sea, the land algorithm is used for such cases. The aerosol products are evaluated against AERONET observations and MODIS Collection 6 aerosol products retrieved from Dark Target (DT) and Deep Blue (DB) algorithms during the DRAGON-NE Asia 2012 campaign conducted from March to May 2012. Comparison of AOD from GOCI and AERONET resulted in a Pearson correlation coefficient of 0.881 and a linear regression equation with GOCI AOD  =  1.083  ×  AERONET AOD − 0.042. The correlation between GOCI and MODIS AODs is higher over ocean than land. GOCI AOD shows better agreement with MODIS DB than MODIS DT. The other GOCI YAER products (AE, FMF, and SSA) show lower correlation with AERONET than AOD, but still show some skills for qualitative use.

[1]  Teruyuki Nakajima,et al.  Development of a Two-Channel Aerosol Retrieval Algorithm on a Global Scale Using NOAA AVHRR , 1999 .

[2]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[3]  W. V. Hoyningen-Huene,et al.  Retrieval of aerosol optical thickness over land surfaces from top‐of‐atmosphere radiance , 2003 .

[4]  D. Blake,et al.  Physical, chemical, and optical properties of regional hazes dominated by smoke in Brazil , 1998 .

[5]  C. Cox Statistics of the sea surface derived from sun glitter , 1954 .

[6]  M. Mishchenko,et al.  Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids , 1997 .

[7]  Lorraine Remer,et al.  The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol , 1997, IEEE Trans. Geosci. Remote. Sens..

[8]  Jaehwa Lee,et al.  Simultaneous retrieval of aerosol properties and clear-sky direct radiative effect over the global ocean from MODIS , 2014 .

[9]  Jay R. Herman,et al.  Earth surface reflectivity climatology at 340–380 nm from TOMS data , 1997 .

[10]  Shobha Kondragunta,et al.  Dust aerosol index (DAI) algorithm for MODIS , 2014 .

[11]  Omar Torres,et al.  Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations , 2013 .

[12]  Alexei Lyapustin,et al.  A multi-angle aerosol optical depth retrieval algorithm for geostationary satellite data over the United States , 2011 .

[13]  Didier Tanré,et al.  Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations , 2010 .

[14]  H. S. Lim,et al.  Retrieving aerosol optical depth using visible and mid‐IR channels from geostationary satellite MTSAT‐1R , 2008 .

[15]  Michael D. King,et al.  Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Bernhard Mayer,et al.  Atmospheric Chemistry and Physics Technical Note: the Libradtran Software Package for Radiative Transfer Calculations – Description and Examples of Use , 2022 .

[17]  J. Ryu,et al.  Algorithm for retrieval of aerosol optical properties over the ocean from the Geostationary Ocean Color Imager , 2010 .

[18]  Jean-François Léon,et al.  Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .

[19]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[20]  Brent N. Holben,et al.  Characteristics of aerosol types from AERONET sunphotometer measurements , 2010 .

[21]  Hiren Jethva,et al.  Global assessment of OMI aerosol single‐scattering albedo using ground‐based AERONET inversion , 2014 .

[22]  Andrew M. Sayer,et al.  Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data , 2013 .

[23]  Yoram J. Kaufman,et al.  An Emerging Global Aerosol Climatology from the MODIS Satellite Sensors , 2008 .

[24]  J. Ryu,et al.  Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI) , 2012, Ocean Science Journal.

[25]  P. Bhartia,et al.  Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation , 1998 .

[26]  S. Kondragunta,et al.  Toward aerosol optical depth retrievals over land from GOES visible radiances: determining surface reflectance , 2005 .

[27]  John P. Burrows,et al.  Retrieval of spectral aerosol optical thickness over land using ocean color sensors MERIS and SeaWiFS , 2010 .

[28]  Thomas F. Eck,et al.  New approach to monitor transboundary particulate pollution over Northeast Asia , 2013 .

[29]  Alexander Smirnov,et al.  High aerosol optical depth biomass burning events: A comparison of optical properties for different source regions , 2003 .

[30]  Satoru Fukuda,et al.  New approaches to removing cloud shadows and evaluating the 380 nm surface reflectance for improved aerosol optical thickness retrievals from the GOSAT/TANSO‐Cloud and Aerosol Imager , 2013 .

[31]  O. Dubovik,et al.  Clear‐column closure studies of aerosols and water vapor aboard the NCAR C‐130 during ACE‐Asia, 2001 , 2003 .

[32]  Toshihiko Takemura,et al.  Consistency of the aerosol type classification from satellite remote sensing during the Atmospheric Brown Cloud–East Asia Regional Experiment campaign , 2007 .

[33]  Jin Huang,et al.  Enhanced Deep Blue aerosol retrieval algorithm: The second generation , 2013 .

[34]  Lorraine A. Remer,et al.  Suomi‐NPP VIIRS aerosol algorithms and data products , 2013 .

[35]  Michael D. King,et al.  Aerosol properties over bright-reflecting source regions , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[36]  T. Eck,et al.  Spectral discrimination of coarse and fine mode optical depth , 2003 .

[37]  L. Remer,et al.  The Collection 6 MODIS aerosol products over land and ocean , 2013 .

[38]  B. Holben,et al.  MODIS 3 km aerosol product: applications over land in an urban/suburban region , 2013 .

[39]  Po-Hsiung Lin,et al.  Estimating ground-level PM 2.5 in eastern China using aerosol optical depth determined from the GOCI satellite instrument , 2015 .

[40]  Yoram J. Kaufman,et al.  Remote sensing of suspended sediments and shallow coastal waters , 2003, IEEE Trans. Geosci. Remote. Sens..

[41]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[42]  Yoram J. Kaufman,et al.  Aerosol optical depth retrieval from GOES-8: Uncertainty study and retrieval validation over South America , 2002 .

[43]  J. Burrows,et al.  Changes in atmospheric aerosol loading retrieved from space-based measurements during the past decade , 2013 .

[44]  R. Gautam,et al.  Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010 , 2012 .

[45]  Estimation of Aerosol Optical Thickness over East Asia Using GMS-5 Visible Channel Measurements , 2005 .

[46]  Beat Schmid,et al.  Column closure studies of lower tropospheric aerosol and water vapor during ACE-Asia using airborne Sun photometer and airborne in situ and ship-based lidar measurements , 2003 .

[47]  T. Eck,et al.  Global evaluation of the Collection 5 MODIS dark-target aerosol products over land , 2010 .

[48]  Yafang Cheng,et al.  Assimilation of next generation geostationary aerosol optical depth retrievals to improve air quality simulations , 2014 .

[49]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[50]  A. Kokhanovsky,et al.  Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations , 2011 .

[51]  Alexander Smirnov,et al.  SeaWiFS Ocean Aerosol Retrieval (SOAR): Algorithm, validation, and comparison with other data sets , 2012 .

[52]  Pierre Coste,et al.  Radiometric calibration of COMS geostationary ocean color imager , 2006, SPIE Remote Sensing.

[53]  N. C. Hsu,et al.  Retrieval of aerosol optical depth under thin cirrus from MODIS: Application to an ocean algorithm , 2013 .

[54]  A. Kokhanovsky,et al.  Space-Based Remote Sensing of Atmospheric Aerosols: The Multi-Angle Spectro-Polarimetric Frontier , 2015 .

[55]  Jae Hwa Lee,et al.  Retrieval of Aerosol Optical Depth over East Asia from a Geostationary Satellite, MTSAT-1R , 2007 .

[56]  Jong-Kuk Choi,et al.  GOCI, the world's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity , 2012 .

[57]  Ping Yang,et al.  Improvement of aerosol optical depth retrieval from MODIS spectral reflectance over the global ocean using new aerosol models archived from AERONET inversion data and tri-axial ellipsoidal dust database , 2011 .

[58]  Philip B. Russell,et al.  Geostationary satellite retrievals of aerosol optical thickness during ACE‐Asia , 2003 .

[59]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[60]  P. Levelt,et al.  Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview , 2007 .

[61]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[62]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[63]  Michael Eisinger,et al.  Refinement of a Database of Spectral Surface Reflectivity in the Range 335-772 nm Derived from 5.5 Years of GOME Observations , 2003 .

[64]  Soon-Chang Yoon,et al.  Seasonal and monthly variations of columnar aerosol optical properties over East Asia determined from multi-year MODIS, LIDAR, and AERONET Sun/sky radiometer measurements , 2007 .

[65]  Hiren Jethva,et al.  Retrieval of Aerosol Optical Depth above Clouds from OMI Observations: Sensitivity Analysis and Case Studies , 2012 .

[66]  Pavel Litvinov,et al.  Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements , 2011 .

[67]  Ukkyo Jeong,et al.  An optimal-estimation-based aerosol retrieval algorithm using OMI near-UV observations , 2016 .

[68]  J. Burrows,et al.  Analysis of linear long-term trend of aerosol optical thickness derived from SeaWiFS using BAER over Europe and South China , 2011 .