Microwave plasmonic mixer in a transparent fibre-wireless link

To cope with the high bandwidth requirements of wireless applications1, carrier frequencies are shifting towards the millimetre-wave and terahertz bands2–5. Conversely, data is normally transported to remote wireless antennas by optical fibres. Therefore, full transparency and flexibility to switch between optical and wireless domains would be desirable6,7. Here, we demonstrate a direct wireless-to-optical receiver in a transparent optical link. We successfully transmit 20 and 10 Gbit s−1 over wireless distances of 1 and 5 m, respectively, at a carrier frequency of 60 GHz. Key to the breakthrough is a plasmonic mixer directly mapping the wireless information onto optical signals. The plasmonic scheme with its subwavelength feature and pronounced field confinement provides a built-in field enhancement of up to 90,000 over the incident field in an ultra-compact and complementary metal-oxide–semiconductor compatible structure. The plasmonic mixer is not limited by electronic speed and thus compatible with future terahertz technologies.A direct wireless-to-optical receiver in a transparent optical link is achieved, thanks to a subwavelength two-dimensionally localized gap-plasmon mixer encoding wireless information directly onto optical signals.

[1]  M. S. Moreolo,et al.  Optical Fiber Communication Conference , 2014 .

[2]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[3]  T. Nguyen,et al.  Four-leaf-clover-shaped antenna for a THz photomixer. , 2010, Optics express.

[4]  Cyril C. Renaud,et al.  Antenna Integrated THz Uni-Traveling Carrier Photodiodes , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  Ray T. Chen,et al.  Silicon-Based Hybrid Integrated Photonic Chip for K ${}_{u}$ band Electromagnetic Wave Sensing , 2017, Journal of Lightwave Technology.

[6]  D. Pile,et al.  Two-dimensionally localized modes of a nanoscale gap plasmon waveguide , 2005 .

[7]  Toshio Morioka,et al.  400-GHz Wireless Transmission of 60-Gb/s Nyquist-QPSK Signals Using UTC-PD and Heterodyne Mixer , 2016, IEEE Transactions on Terahertz Science and Technology.

[8]  Jianjun Yu,et al.  Fiber‐wireless integration for 80 Gbps polarization division multiplexing −16QAM signal transmission at W‐band without RF down conversion , 2015 .

[9]  Jianping Yao,et al.  Microwave Photonics , 2009, Journal of Lightwave Technology.

[10]  Juerg Leuthold,et al.  Effect of Rigid Bridge-Protection Units, Quadrupolar Interactions, and Blending in Organic Electro-Optic Chromophores , 2017 .

[11]  Jianjun Yu,et al.  Fiber-Wireless-Fiber Link for 128-Gb/s PDM-16QAM Signal Transmission at \(W\) -Band , 2014, IEEE Photonics Technology Letters.

[12]  David Hillerkuss,et al.  All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale , 2015, Nature Photonics.

[13]  Min Qiu,et al.  Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface , 2009 .

[14]  T. Zwick,et al.  Terahertz-to-Optical Conversion Using a Plasmonic Modulator , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[15]  Michael R. Watts,et al.  Large-scale nanophotonic phased array , 2013, Nature.

[16]  Hiroshi Ito,et al.  Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes , 2005 .

[17]  P. Verheyen,et al.  High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform. , 2010, Optics express.

[18]  Shi Jia,et al.  120 Gb/s Multi-Channel THz Wireless Transmission and THz Receiver Performance Analysis , 2017, IEEE Photonics Technology Letters.

[19]  Takashi Mizuochi,et al.  Forward error correction for 100 G transport networks , 2010, IEEE Communications Magazine.

[20]  Vladimir M Shalaev,et al.  The Case for Plasmonics , 2010, Science.

[21]  Erdan Gu,et al.  Conference on Lasers and Electro-OP , 2007 .

[22]  José Capmany,et al.  Microwave photonics combines two worlds , 2007 .

[23]  Juerg Leuthold,et al.  Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design. , 2017, Optics express.

[24]  A. Nirmalathas,et al.  Fiber-Wireless Networks and Subsystem Technologies , 2010, Journal of Lightwave Technology.

[25]  Ray T. Chen,et al.  Integrated Photonic Electromagnetic Field Sensor Based on Broadband Bowtie Antenna Coupled Silicon Organic Hybrid Modulator , 2014, Journal of Lightwave Technology.

[26]  Jianjun Yu,et al.  Fiber-Wireless-Fiber Link for 100-Gb/s PDM-QPSK Signal Transmission at W-Band , 2014, IEEE Photonics Technology Letters.

[27]  Juerg Leuthold,et al.  Three-Dimensional Phase Modulator at Telecom Wavelength Acting as a Terahertz Detector with an Electro-Optic Bandwidth of 1.25 Terahertz , 2018 .

[28]  Cyril C. Renaud,et al.  Integrated Semiconductor Laser Optical Phase Lock Loops , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[29]  Yasuyuki Okamura,et al.  Electrooptic Millimeter-Wave–Lightwave Signal Converters Suspended to Gap-Embedded Patch Antennas on Low-$k$ Dielectric Materials , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  Cyril C. Renaud,et al.  TeraHertz Photonics for Wireless Communications , 2015, Journal of Lightwave Technology.

[31]  O. Ambacher,et al.  Wireless sub-THz communication system with high data rate , 2013, Nature Photonics.

[32]  V. R. Pagan,et al.  RF photonic downconversion of vector modulated signals based on a millimeter-wave coupled electrooptic nonlinear polymer phase-modulator. , 2017, Optics express.

[33]  Rodney Waterhouse,et al.  Realizing 5G: Microwave Photonics for 5G Mobile Wireless Systems , 2015, IEEE Microwave Magazine.

[34]  M. Jarrahi,et al.  A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity , 2017, Scientific Reports.

[35]  A. Seeds,et al.  Photonics, fiber and THz wireless communication , 2017 .

[36]  Axel Tessmann,et al.  64 Gbit/s Transmission over 850 m Fixed Wireless Link at 240 GHz Carrier Frequency , 2015 .

[37]  Emilien Peytavit,et al.  Ultrawide-Bandwidth Single-Channel 0.4-THz Wireless Link Combining Broadband Quasi-Optic Photomixer and Coherent Detection , 2014, IEEE Transactions on Terahertz Science and Technology.

[38]  Cyril C. Renaud,et al.  Advances in terahertz communications accelerated by photonics , 2016, Nature Photonics.

[39]  Juerg Leuthold,et al.  Driver-Less Sub 1 Vpp Operation of a Plasmonic-Organic Hybrid Modulator at 100 GBd NRZ , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[40]  David Hillerkuss,et al.  Plasmonic Organic Hybrid Modulators—Scaling Highest Speed Photonics to the Microscale , 2016, Proceedings of the IEEE.

[41]  David Hillerkuss,et al.  Direct Conversion of Free Space Millimeter Waves to Optical Domain by Plasmonic Modulator Antenna , 2015, Nano letters.

[42]  D Hillerkuss,et al.  Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. , 2017, Optics express.

[43]  José Capmany,et al.  Integrated microwave photonics , 2013 .

[44]  V. Shalaev,et al.  1 Supplementary Information : Low loss Plasmon-assisted electro-optic modulator , 2018 .