GPS estimates of ocean tide loading in NW-France: Determination of ocean tide loading constituents and comparison with a recent ocean tide model

SUMMARY Ocean loading effects cause 3-D displacements large enough to affect space geodesy measurements either at the subdiurnal periods or at longer time scales by the means of spurious signals. GPS measurements, in turn, could provide local improvements of the models in coastal areas if their ability to precisely monitor such rapid displacements is assessed. In this paper, we use 105 days of continuous GPS measurements collected in 2004 in the French Brittany and Cotentin region to investigate: (1) the precision achieved by the GPS analysis on measuring 3-D subdiurnal displacements and amplitude and phase of the tidal constituents, (2) the quality of the most recent ocean tide model FES2004 in such a complex coastal context. Indeed, in this area, tide amplitudes are among the largest in the world (up to 16 cm of loading displacements on the vertical component) and are believed to show strong shallow-water tides. From a state of the art GPS analysis using the scientific GAMIT software over 2-h sessions, we test two independent strategies for the realization of the reference frame. The position time series are then compared with the displacements predicted by the FES2004 model applied on an elastic Earth model. The two sets of results are consistent with each other at the same level of agreement than with the predicted displacements, namely 3‐5 mm on the horizontal components, 10 mm on the vertical. This assesses the capability of this technique for measuring 3-D ocean tide loading deformation. We validate the FES2004 model in the Brittany area, even though it slightly (2‐7 mm) underestimates the three components amplitudes. With a harmonic analysis of the observed position time series, we obtain nevertheless an agreement at a submillimetre level for the M2, N2, O1, Q1 tidal constituents and at a millimetre level for the K1 and S2 tidal constituents. Moreover, we can extract a significant M4 load signal at the 95 per cent confidence level from the GPS time series at the stations located in the Mont St Michel area. The detection of other shallow-water constituents would be helpful to understand the amplitude deficit between the FES2004 predicted and GPS observed displacements.

[1]  M. E. Parke,et al.  Accuracy assessment of recent ocean tide models , 1997 .

[2]  Walter H. F. Smith,et al.  New, improved version of generic mapping tools released , 1998 .

[3]  Anthony Lambert,et al.  Ocean loading corrections for continuous GPS: A case study at the Canadian coastal site Holberg , 2000 .

[4]  Shfaqat Abbas Khan,et al.  Determination of semi‐diurnal ocean tide loading constituents using GPS in Alaska , 2001 .

[5]  J. Høyer,et al.  Shallow-water loading tides in Japan from superconducting gravimetry , 2004 .

[6]  Peter J. Clarke,et al.  Validation of ocean tide models around Antarctica using onshore GPS and gravity data , 2005 .

[7]  L. Mervart,et al.  Bernese GPS Software Version 5.0 , 2007 .

[8]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[9]  Y. Bock,et al.  Anatomy of apparent seasonal variations from GPS‐derived site position time series , 2001 .

[10]  N. Florsch,et al.  GPS measurements of ocean loading and its impact on zenith tropospheric delay estimates: a case study in Brittany, France , 2002 .

[11]  Jean-Marie Nicolas,et al.  Ocean tide loading (OTL) displacements from global and local grids: comparisons to GPS estimates over the shelf of Brittany, France , 2008 .

[12]  Mike P. Stewart,et al.  Aliased tidal signatures in continuous GPS height time series , 2003 .

[13]  G. Blewitt Carrier Phase Ambiguity Resolution for the Global Positioning System Applied to Geodetic Baselines up to 2000 km , 1989 .

[14]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[15]  B. Simon,et al.  Observation gravimétrique des surcharges océaniques : premières expériences en Bretagne , 2001 .

[16]  F. H. Webb,et al.  Ocean loading tides in GPS and rapid variations of the frame origin , 2000 .

[17]  Peter J. Clarke,et al.  A comparison of GPS, VLBI and model estimates of ocean tide loading displacements , 2006 .

[18]  Peter J. Clarke,et al.  Stability of direct GPS estimates of ocean tide loading , 2004 .

[19]  O. Andersen,et al.  Mapping nonlinear shallow-water tides: a look at the past and future , 2006 .

[20]  James L. Davis,et al.  Geodesy by radio interferometry: The application of Kalman Filtering to the analysis of very long baseline interferometry data , 1990 .

[21]  S. Rosat,et al.  Non-linear oceanic tides observed by superconducting gravimeters , 2004 .

[22]  G. Beutler,et al.  High‐frequency variations in Earth rotation from Global Positioning System data , 2001 .

[23]  C. Provost,et al.  FES99: A Global Tide Finite Element Solution Assimilating Tide Gauge and Altimetric Information , 2002 .

[24]  Peter J. Clarke,et al.  GPS sidereal filtering: coordinate- and carrier-phase-level strategies , 2007 .

[25]  Ole Baltazar Andersen,et al.  Shallow water tides in the northwest European shelf region from TOPEX/POSEIDON altimetry , 1999 .

[26]  Paul Tregoning,et al.  Accuracy of absolute precipitable water vapor estimates from GPS observations , 1998 .

[27]  Geoffrey Blewitt,et al.  Crustal displacements due to continental water loading , 2001 .

[28]  S. Lentz,et al.  Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE , 2002 .

[29]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[30]  O. Francis,et al.  Modelling the global ocean tides: modern insights from FES2004 , 2006 .

[31]  Hans-Georg Scherneck,et al.  The M2 ocean tide loading wave in Alaska: vertical and horizontal displacements, modelled and observed , 2001 .

[32]  Zuheir Altamimi,et al.  ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications , 2002 .

[33]  A. Niell Global mapping functions for the atmosphere delay at radio wavelengths , 1996 .

[34]  G. Blewitt,et al.  A New Global Mode of Earth Deformation: Seasonal Cycle Detected , 2001, Science.

[35]  Steven Businger,et al.  GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water , 1996 .

[36]  J. Zumberge,et al.  Precise point positioning for the efficient and robust analysis of GPS data from large networks , 1997 .

[37]  Matt A. King,et al.  Spurious periodic horizontal signals in sub-daily GPS position estimates , 2003 .

[38]  Matt A. King,et al.  Tidal observations on floating ice using a single GPS receiver , 2003 .

[39]  T. Baker,et al.  Validating Earth and ocean tide models using tidal gravity measurements , 2003 .

[40]  O. B. Andersen,et al.  Intercomparison of recent ocean tide models , 1995 .

[41]  Mike P. Stewart,et al.  GPS height time series: Short‐period origins of spurious long‐period signals , 2007 .

[42]  Richard D. Ray,et al.  A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2 , 1999 .

[43]  Duncan Carr Agnew,et al.  NLOADF: A program for computing ocean‐tide loading , 1997 .