Fundamental components of attention.

A mechanistic understanding of attention is necessary for the elucidation of the neurobiological basis of conscious experience. This chapter presents a framework for thinking about attention that facilitates the analysis of this cognitive process in terms of underlying neural mechanisms. Four processes are fundamental to attention: working memory, top-down sensitivity control, competitive selection, and automatic bottom-up filtering for salient stimuli. Each process makes a distinct and essential contribution to attention. Voluntary control of attention involves the first three processes (working memory, top-down sensitivity control, and competitive selection) operating in a recurrent loop. Recent results from neurobiological research on attention are discussed within this framework.

[1]  J. Deese Principles of Psychology , 1923, Nature.

[2]  G. E. Alexander,et al.  Neuron Activity Related to Short-Term Memory , 1971, Science.

[3]  P S Goldman-Rakic,et al.  Callosal and intrahemispheric connectivity of the prefrontal association cortex in rhesus monkey: Relation between intraparietal and principal sulcal cortex , 1984, The Journal of comparative neurology.

[4]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[5]  J. Findlay,et al.  The Relationship between Eye Movements and Spatial Attention , 1986, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[6]  The effect of frontal eye field and superior colliculus lesions on the saccadic and pursuit eye movement initiation , 1987 .

[7]  John H. R. Maunsell,et al.  The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey. , 1987, Journal of neurophysiology.

[8]  G. Rizzolatti,et al.  Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention , 1987, Neuropsychologia.

[9]  P. Goldman-Rakic,et al.  Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. , 1989, Journal of neurophysiology.

[10]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[11]  D. Ts'o,et al.  Functional organization of primate visual cortex revealed by high resolution optical imaging. , 1990, Science.

[12]  M. Corbetta,et al.  Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[14]  S. Petersen,et al.  The pulvinar and visual salience , 1992, Trends in Neurosciences.

[15]  E. V. Famiglietti,et al.  Polyaxonal amacrine cells of rabbit retina: Morphology and stratification of PA1 cells , 1992, The Journal of comparative neurology.

[16]  J. C. Johnston,et al.  Involuntary attentional capture by abrupt onsets , 1992, Perception & psychophysics.

[17]  K. Reinikainen,et al.  Selective attention enhances the auditory 40-Hz transient response in humans , 1993, Nature.

[18]  B. Stein,et al.  The Merging of the Senses , 1993 .

[19]  John Duncan,et al.  A neural basis for visual search in inferior temporal cortex , 1993, Nature.

[20]  S. Wise,et al.  Effects of attention on visuomotor activity in the premotor and prefrontal cortex of a primate. , 1993, Somatosensory & motor research.

[21]  J. Fuster Memory in the cerebral cortex , 1994 .

[22]  B. C. Motter,et al.  Neural correlates of feature selective memory and pop-out in extrastriate area V4 , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  Jordan Grafman,et al.  The role of prefrontal regions in the Stroop task , 1995, Neuropsychologia.

[24]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[25]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  C. Bruce,et al.  Topography of projections to posterior cortical areas from the macaque frontal eye fields , 1995, The Journal of comparative neurology.

[27]  J. Jonides,et al.  Dissociating verbal and spatial working memory using PET. , 1996, Cerebral cortex.

[28]  Edward E. Smith,et al.  PET Evidence for an Amodal Verbal Working Memory System , 1996, NeuroImage.

[29]  R. Desimone,et al.  Neural Mechanisms of Visual Working Memory in Prefrontal Cortex of the Macaque , 1996, The Journal of Neuroscience.

[30]  J. Duncan,et al.  Intelligence and the Frontal Lobe: The Organization of Goal-Directed Behavior , 1996, Cognitive Psychology.

[31]  R. Andersen,et al.  Multimodal representation of space in the posterior parietal cortex and its use in planning movements. , 1997, Annual review of neuroscience.

[32]  D. Dacey,et al.  Physiology of the A1 amacrine: A spiking, axon-bearing interneuron of the macaque monkey retina , 1997, Visual Neuroscience.

[33]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[34]  R. Desimone,et al.  Object and place memory in the macaque entorhinal cortex. , 1997, Journal of neurophysiology.

[35]  S. Yantis,et al.  Visual attention: control, representation, and time course. , 1997, Annual review of psychology.

[36]  P. Glimcher,et al.  Responses of intraparietal neurons to saccadic targets and visual distractors. , 1997, Journal of neurophysiology.

[37]  M. Goldberg,et al.  Spatial processing in the monkey frontal eye field. I. Predictive visual responses. , 1997, Journal of neurophysiology.

[38]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[39]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[40]  D. Gitelman,et al.  Neuroanatomic Overlap of Working Memory and Spatial Attention Networks: A Functional MRI Comparison within Subjects , 1999, NeuroImage.

[41]  M. Shadlen,et al.  Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque , 1999, Nature Neuroscience.

[42]  M. Mesulam,et al.  Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[43]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[44]  J. Maunsell,et al.  Effects of Attention on the Processing of Motion in Macaque Middle Temporal and Medial Superior Temporal Visual Cortical Areas , 1999, The Journal of Neuroscience.

[45]  M. Mesulam Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[46]  M. Goldberg,et al.  Response of neurons in the lateral intraparietal area to a distractor flashed during the delay period of a memory-guided saccade. , 2000, Journal of neurophysiology.

[47]  E. Niebur,et al.  Growth patterns in the developing brain detected by using continuum mechanical tensor maps , 2022 .

[48]  P. Goldman-Rakic,et al.  Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. , 2000, Journal of neurophysiology.

[49]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[50]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[51]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[52]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[53]  R. Andersen,et al.  The parietal reach region codes the next planned movement in a sequential reach task. , 2001, Journal of neurophysiology.

[54]  Geoffrey M. Ghose,et al.  Attentional modulation in visual cortex depends on task timing , 2002, Nature.

[55]  S. Treue,et al.  Attentional Modulation Strength in Cortical Area MT Depends on Stimulus Contrast , 2002, Neuron.

[56]  J. Maunsell,et al.  The role of attention in visual processing. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[57]  M. Shadlen,et al.  Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task , 2002, The Journal of Neuroscience.

[58]  J. Duncan,et al.  Filtering of neural signals by focused attention in the monkey prefrontal cortex , 2002, Nature Neuroscience.

[59]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[60]  Daeyeol Lee Coherent Oscillations in Neuronal Activity of the Supplementary Motor Area during a Visuomotor Task , 2003, The Journal of Neuroscience.

[61]  D. McCormick,et al.  Turning on and off recurrent balanced cortical activity , 2003, Nature.

[62]  R. Desimone,et al.  Interacting Roles of Attention and Visual Salience in V4 , 2003, Neuron.

[63]  Katherine M. Armstrong,et al.  Visuomotor Origins of Covert Spatial Attention , 2003, Neuron.

[64]  A. Baddeley Working memory: looking back and looking forward , 2003, Nature Reviews Neuroscience.

[65]  W. A. Phillips,et al.  Where the rubber meets the road: The importance of implementation , 2003, Behavioral and Brain Sciences.

[66]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[67]  S. Yantis,et al.  Control of Attention Shifts between Vision and Audition in Human Cortex , 2004, The Journal of Neuroscience.

[68]  Robert M. McPeek,et al.  Deficits in saccade target selection after inactivation of superior colliculus , 2004, Nature Neuroscience.

[69]  D. Tank,et al.  Persistent neural activity: prevalence and mechanisms , 2004, Current Opinion in Neurobiology.

[70]  Christos Constantinidis,et al.  A Neural Circuit Basis for Spatial Working Memory , 2004, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[71]  P. Goldman-Rakic,et al.  Comparison of human infants and rhesus monkeys on Piaget's AB task: evidence for dependence on dorsolateral prefrontal cortex , 2004, Experimental Brain Research.

[72]  T. Moore,et al.  Microstimulation of the frontal eye field and its effects on covert spatial attention. , 2004, Journal of neurophysiology.

[73]  Robert H. Wurtz,et al.  Subcortical Modulation of Attention Counters Change Blindness , 2004, The Journal of Neuroscience.

[74]  H. Karten,et al.  Morphology and connections of nucleus isthmi pars magnocellularis in chicks (Gallus gallus) , 2004, The Journal of comparative neurology.

[75]  Mark D'Esposito,et al.  Searching for “the Top” in Top-Down Control , 2005, Neuron.

[76]  James R Müller,et al.  Microstimulation of the superior colliculus focuses attention without moving the eyes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Takashi R Sato,et al.  Neuronal Basis of Covert Spatial Attention in the Frontal Eye Field , 2005, The Journal of Neuroscience.

[78]  W. Freiwald,et al.  Coherent oscillatory activity in monkey area v4 predicts successful allocation of attention. , 2005, Cerebral cortex.

[79]  R. Reid,et al.  Attention Modulates the Responses of Simple Cells in Monkey Primary Visual Cortex , 2005, The Journal of Neuroscience.

[80]  W. Newsome,et al.  Choosing the greater of two goods: neural currencies for valuation and decision making , 2005, Nature Reviews Neuroscience.

[81]  Robert Desimone,et al.  Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4 , 2005, Science.

[82]  S. Faraone,et al.  Attention-deficit hyperactivity disorder , 2005, The Lancet.

[83]  H. Spekreijse,et al.  Attention Lights Up New Object Representations before the Old Ones Fade Away , 2006, The Journal of Neuroscience.

[84]  John H. R. Maunsell,et al.  Effects of spatial attention on contrast response functions in macaque area V4. , 2006, Journal of neurophysiology.

[85]  M. Goldberg,et al.  Activity in the Lateral Intraparietal Area Predicts the Goal and Latency of Saccades in a Free-Viewing Visual Search Task , 2006, The Journal of Neuroscience.

[86]  John H. R. Maunsell,et al.  Effects of task difficulty and target likelihood in area V4 of macaque monkeys. , 2006, Journal of neurophysiology.

[87]  C. Curtis Prefrontal and parietal contributions to spatial working memory , 2006, Neuroscience.

[88]  H. Karten,et al.  Columnar projections from the cholinergic nucleus isthmi to the optic tectum in chicks (Gallus gallus): A possible substrate for synchronizing tectal channels , 2006, The Journal of comparative neurology.

[89]  Katherine M. Armstrong,et al.  Visual and oculomotor selection: links, causes and implications for spatial attention , 2006, Trends in Cognitive Sciences.

[90]  Aldo Genovesio,et al.  Representation of Future and Previous Spatial Goals by Separate Neural Populations in Prefrontal Cortex , 2006, The Journal of Neuroscience.

[91]  Tirin Moore,et al.  Changes in Visual Receptive Fields with Microstimulation of Frontal Cortex , 2006, Neuron.

[92]  R. Desimone,et al.  Gamma-band synchronization in visual cortex predicts speed of change detection , 2006, Nature.

[93]  John H. R. Maunsell,et al.  Feature-based attention in visual cortex , 2006, Trends in Neurosciences.

[94]  R. Oostenveld,et al.  Tactile Spatial Attention Enhances Gamma-Band Activity in Somatosensory Cortex and Reduces Low-Frequency Activity in Parieto-Occipital Areas , 2006, The Journal of Neuroscience.

[95]  Robert H. Wurtz,et al.  Influence of the thalamus on spatial visual processing in frontal cortex , 2006, Nature.

[96]  S. Ishii,et al.  Resolution of Uncertainty in Prefrontal Cortex , 2006, Neuron.

[97]  Eric I. Knudsen,et al.  Top-down gain control of the auditory space map by gaze control circuitry in the barn owl , 2006, Nature.

[98]  W. Newsome,et al.  Local Field Potential in Cortical Area MT: Stimulus Tuning and Behavioral Correlations , 2006, The Journal of Neuroscience.

[99]  Robert H Wurtz,et al.  Attentional Modulation of Thalamic Reticular Neurons , 2006, The Journal of Neuroscience.

[100]  M. Hasselmo,et al.  Mechanism of Graded Persistent Cellular Activity of Entorhinal Cortex Layer V Neurons , 2006, Neuron.

[101]  T. Womelsdorf,et al.  Dynamic shifts of visual receptive fields in cortical area MT by spatial attention , 2006, Nature Neuroscience.

[102]  Marlene Behrmann,et al.  Cortical systems mediating visual attention to both objects and spatial locations. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[103]  J. Taube The head direction signal: origins and sensory-motor integration. , 2007, Annual review of neuroscience.

[104]  W. N. Schoenfeld,et al.  Principles of Psychology , 2007 .

[105]  Elyssa B. Margolis,et al.  Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. , 2007, Annual review of neuroscience.

[106]  H. Eichenbaum,et al.  The medial temporal lobe and recognition memory. , 2007, Annual review of neuroscience.

[107]  Michael Boehnke,et al.  Turning on and off recurrent balanced cortical activity , 2022 .