LOCAL WHITTLE ESTIMATION OF FRACTIONAL INTEGRATION FOR NONLINEAR PROCESSES

We study asymptotic properties of the local Whittle estimator of the long memory parameter for a wide class of fractionally integrated nonlinear time series models. In particular, we solve the conjecture posed by Phillips and Shimotsu (2004, Annals of Statistics 32, 656–692) for Type I processes under our framework, which requires a global smoothness condition on the spectral density of the short memory component. The formulation allows the widely used fractional autoregressive integrated moving average (FARIMA) models with generalized autoregressive conditionally heteroskedastic (GARCH) innovations of various forms, and our asymptotic results provide a theoretical justification of the findings in simulations that the local Whittle estimator is robust to conditional heteroskedasticity. Additionally, our conditions are easily verifiable and are satisfied for many nonlinear time series models.We thank Liudas Giraitis for providing the manuscript by Dalla, Giraitis, and Hidalgo (2006). We are grateful to the two referees and the editor for their detailed comments, which led to substantial improvements. We also thank Michael Stein for helpful comments on an earlier version. The work is supported in part by NSF grant DMS-0478704.

[1]  Peter C. B. Phillips,et al.  Local Whittle estimation of fractional integration and some of its variants , 2006 .

[2]  P. Robinson,et al.  The distance between rival nonstationary fractional processes , 2004 .

[3]  Morten Ørregaard Nielsen,et al.  Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration , 2005 .

[4]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[5]  Philippe Soulier,et al.  Estimating Long Memory in Volatility , 2002 .

[6]  Michael McAleer,et al.  A Survey of Recent Theoretical Results for Time Series Models with GARCH Errors , 2001 .

[7]  Jiayang Sun,et al.  Recent Developments in Nonparametric Inference and Probability , 2006 .

[8]  Robert M. Kunst,et al.  Fractionally Integrated Models With ARCH Errors , 1993 .

[9]  H. L. Gray,et al.  ON GENERALIZED FRACTIONAL PROCESSES , 1989 .

[10]  W. Wu,et al.  On linear processes with dependent innovations , 2005 .

[11]  Robert M. Kunst,et al.  Forecasting High-Frequency Financial Data with the ARFIMA-ARCH Model , 2001 .

[12]  Marc Henry,et al.  Robust Automatic Bandwidth for Long Memory , 2001 .

[13]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[14]  Domenico Marinucci,et al.  Weak convergence of multivariate fractional processes , 2000 .

[15]  A LIMIT THEOREM FOR QUADRATIC FORMS AND ITS APPLICATIONS , 2007, Econometric Theory.

[16]  Invariance principles for fractionally integrated nonlinear processes , 2006, math/0608223.

[17]  H. Tong Non-linear time series. A dynamical system approach , 1990 .

[18]  Peter C. B. Phillips,et al.  Exact Local Whittle Estimation of Fractional Integration , 2002 .

[19]  Peter C. B. Phillips,et al.  Log Periodogram Regression: The Nonstationary Case , 2006 .

[20]  Wei Biao Wu,et al.  STRONG INVARIANCE PRINCIPLES FOR DEPENDENT RANDOM VARIABLES , 2007, 0711.3674.

[21]  M. Rosenblatt Stationary sequences and random fields , 1985 .

[22]  P. Robinson,et al.  Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression , 1991 .

[23]  Michael McAleer,et al.  NECESSARY AND SUFFICIENT MOMENT CONDITIONS FOR THE GARCH(r,s) AND ASYMMETRIC POWER GARCH(r,s) MODELS , 2002, Econometric Theory.

[24]  P. Phillips,et al.  Modified Local Whittle Estimation of the Memory Parameter in the Nonstationary Case , 2000 .

[25]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[26]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[27]  T. Rao,et al.  An Introduction to Bispectral Analysis and Bilinear Time Series Models , 1984 .

[28]  P. Robinson,et al.  LONG AND SHORT MEMORY CONDITIONAL HETEROSKEDASTICITY IN ESTIMATING THE MEMORY PARAMETER OF LEVELS , 1999, Econometric Theory.

[29]  Victor Solo,et al.  Asymptotics for Linear Processes , 1992 .

[30]  P. Phillips Unit root log periodogram regression , 2007 .

[31]  Marc Henry,et al.  Bandwidth Choice in Gaussian Semiparametric Estimation of Long Range Dependence , 1996 .

[32]  Wei Biao Wu,et al.  Limit theorems for iterated random functions , 2004, Journal of Applied Probability.

[33]  M. Rosenblatt Markov Processes, Structure and Asymptotic Behavior , 1971 .

[34]  P. Robinson Log-Periodogram Regression of Time Series with Long Range Dependence , 1995 .

[35]  H. R. Kuensch Statistical Aspects of Self-Similar Processes , 1986 .

[36]  C. Velasco,et al.  Non-stationary log-periodogram regression , 1999 .

[37]  C. Velasco,et al.  NON-GAUSSIAN LOG-PERIODOGRAM REGRESSION , 2000, Econometric Theory.

[38]  Domenico Marinucci,et al.  Alternative forms of fractional Brownian motion , 1998 .

[39]  E. J. Hannan,et al.  Central limit theorems for time series regression , 1973 .

[40]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[41]  M. McAleer,et al.  Stationarity and the existence of moments of a family of GARCH processes , 2002 .

[42]  P. Phillips,et al.  Local Whittle estimation in nonstationary and unit root cases , 2004, math/0406462.

[43]  Leonard M. Adleman,et al.  Proof of proposition 3 , 1992 .

[44]  P. Phillips Discrete Fourier Transforms of Fractional Processes , 1999 .

[45]  Robert M. Kunst,et al.  Fractionally Integrated Models With ARCH Errors: With an Application to the Swiss 1-Month Euromarket Interest Rate , 1998 .

[46]  Murray Rosenblatt,et al.  Stationary Processes as Shifts of Functions of Independent Random Variables , 1959 .

[47]  R. Leipus,et al.  STATIONARY ARCH MODELS: DEPENDENCE STRUCTURE AND CENTRAL LIMIT THEOREM , 2000, Econometric Theory.

[48]  Paolo Zaffaroni,et al.  STATIONARITY AND MEMORY OF ARCH(∞) MODELS , 2004, Econometric Theory.

[49]  W. Wu,et al.  Nonlinear system theory: another look at dependence. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  X. Shao,et al.  Asymptotic spectral theory for nonlinear time series , 2006, math/0611029.

[51]  C. Velasco Gaussian Semiparametric Estimation of Non‐stationary Time Series , 1999 .

[52]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[53]  Y. Tse,et al.  Forecasting the Nikkei spot index with fractional cointegration , 1999 .

[54]  D. Brillinger Time series - data analysis and theory , 1981, Classics in applied mathematics.

[55]  Liudas Giraitis,et al.  A model for long memory conditional heteroscedasticity , 2000 .

[56]  L. Giraitis,et al.  Consistent estimation of the memory parameter for nonlinear time series , 2006 .

[57]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[58]  Wai Keung Li,et al.  On Fractionally Integrated Autoregressive Moving-Average Time Series Models with Conditional Heteroscedasticity , 1997 .

[59]  Felix Schlenk,et al.  Proof of Theorem 3 , 2005 .

[60]  P. Robinson Gaussian Semiparametric Estimation of Long Range Dependence , 1995 .

[61]  M. B. Priestley,et al.  Non-linear and non-stationary time series analysis , 1990 .