Phase-Delay Cold-FET Pre-Distortion Linearizer for Millimeter-Wave CMOS Power Amplifiers

A phase-delay cold-FET pre-distortion linearizer technique is proposed to improve the gain compensation ability compared with the conventional cold-FET pre-distortion linearizer. The gain expansion analysis of the power amplifier (PA) cascading with a pre-distortion linearizer and the comparison with the conventional linearizer and the proposed phase-delay linearizer are provided in this paper. To demonstrate the feasibility of this concept, a single-ended V-band cascode PA with the 90° phase-delay linearizer and a differential K-band common-source PA with the 180° phase-delay linearizer are developed to verify the characteristics. The V-band PA implemented in 90-nm CMOS process exhibits the output 1-dB compression power (OP1 dB) of 13.7 dBm and the power-added efficiency (PAE) at OP1 dB of 14.3%. The K-band PA implemented in 0.18-μm CMOS process demonstrates 17.5-dBm OP1 dB and 13.6% PAE at OP1 dB.

[1]  Huei Wang,et al.  A 22-dBm 24-GHz power amplifier using 0.18-µm CMOS technology , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[2]  K. Yamauchi,et al.  A microwave miniaturized linearizer using a parallel diode , 1997, 1997 IEEE MTT-S International Microwave Symposium Digest.

[3]  Jeng-Han Tsai,et al.  A 60 GHz CMOS Power Amplifier With Built-in Pre-Distortion Linearizer , 2011, IEEE Microwave and Wireless Components Letters.

[4]  Jeng-Han Tsai,et al.  A 20 to 24 GHz $+$16.8 dBm Fully Integrated Power Amplifier Using 0.18 $\mu{\rm m}$ CMOS Process , 2009, IEEE Microwave and Wireless Components Letters.

[5]  S.P. Stapleton,et al.  Digital predistortion linearizes wireless power amplifiers , 2005, IEEE Microwave Magazine.

[6]  Herbert Zirath,et al.  A broadband differential cascode power amplifier in 45 nm CMOS for high-speed 60 GHz system-on-chip , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[7]  Songcheol Hong,et al.  A CMOS Power Amplifier With a Built-In RF Predistorter for Handset Applications , 2012, IEEE Transactions on Microwave Theory and Techniques.

[8]  Qun Jane Gu,et al.  A 60 GHz Tunable Output Profile Power Amplifier in 65 nm CMOS , 2011, IEEE Microwave and Wireless Components Letters.

[9]  Alberto Valdes-Garcia,et al.  A 1V 17.9dBm 60GHz power amplifier in standard 65nm CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[10]  P. Handel,et al.  Performance Evaluation of Peak-to-Average Power Ratio Reduction and Digital Pre-Distortion for OFDM Based Systems , 2011, IEEE Transactions on Microwave Theory and Techniques.

[11]  Frederic Roger,et al.  A 200mW 100MHz-to-4GHz 11th-order complex analog memory polynomial predistorter for wireless infrastructure RF amplifiers , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[12]  N. Kadowaki,et al.  An 18 GHz-band MMIC linearizer using a parallel diode with a bias feed resistance and a parallel capacitor , 2000, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017).

[13]  eletro-tecnologia tecnologia da comunicação Eletrônicas Advanced Design System , 2012 .

[14]  Mun-Woo Lee,et al.  A High-Linearity Wideband Power Amplifier With Cascaded Third-Order Analog Predistorters , 2010, IEEE Microwave and Wireless Components Letters.

[15]  Steve C. Cripps,et al.  Advanced Techniques in RF Power Amplifier Design , 2002 .

[16]  Jeng-Han Tsai,et al.  Design and Analysis of a 55–71-GHz Compact and Broadband Distributed Active Transformer Power Amplifier in 90-nm CMOS Process , 2009, IEEE Transactions on Microwave Theory and Techniques.

[17]  R. Berenguer,et al.  Millimeter-Wave Self-Healing Power Amplifier With Adaptive Amplitude and Phase Linearization in 65-nm CMOS , 2012, IEEE Transactions on Microwave Theory and Techniques.

[18]  Huei Wang,et al.  Design and Analysis of Novel Linearization Technique of Cascode Cell in a 60-GHz CMOS Demodulator , 2011, IEEE Transactions on Microwave Theory and Techniques.

[19]  Didier Belot,et al.  A 53-to-68GHz 18dBm power amplifier with an 8-way combiner in standard 65nm CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[20]  Jeng-Han Tsai,et al.  A 60-GHz Power Amplifier Design Using Dual-Radial Symmetric Architecture in 90-nm Low-Power CMOS , 2013, IEEE Transactions on Microwave Theory and Techniques.

[21]  Jeng-Han Tsai,et al.  Design and analysis of a 44-GHz MMIC low-loss built-in linearizer for high-linearity medium power amplifiers , 2006, IEEE Transactions on Microwave Theory and Techniques.

[22]  Jeng-Han Tsai,et al.  Parasitic-Insensitive Linearization Methods for 60-GHz 90-nm CMOS LNAs , 2012, IEEE Transactions on Microwave Theory and Techniques.

[23]  Nai-Chung Kuo,et al.  K-band CMOS power amplifier with adaptive bias for enhancement in back-off efficiency , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[24]  C. Weitzel,et al.  RF power amplifiers for wireless communications , 2002, 24th Annual Technical Digest Gallium Arsenide Integrated Circuit (GaAs IC) Symposiu.

[25]  M.-C.F. Chang,et al.  60 GHz CMOS Amplifiers Using Transformer-Coupling and Artificial Dielectric Differential Transmission Lines for Compact Design , 2009, IEEE Journal of Solid-State Circuits.

[26]  Jeng-Han Tsai,et al.  MM-Wave Integration and Combinations , 2012, IEEE Microwave Magazine.

[27]  Ali M. Niknejad,et al.  Current combining 60GHz CMOS power amplifiers , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[28]  Patrick Reynaert,et al.  60GHz power amplifier with distributed active transformer and local feedback , 2010, 2010 Proceedings of ESSCIRC.

[29]  Kun-You Lin,et al.  A 60 GHz CMOS power amplifier with modified pre-distortion linearizer , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[30]  T. Yoshimasu,et al.  An HBT MMIC power amplifier with an integrated diode linearizer for low-voltage portable phone applications , 1998, IEEE J. Solid State Circuits.

[31]  Kun-You Lin,et al.  A K-band CMOS cascode power amplifier using optimal bias selection methodology , 2011, Asia-Pacific Microwave Conference 2011.

[32]  John R. Long,et al.  A 58–65 GHz Neutralized CMOS Power Amplifier With PAE Above 10% at 1-V Supply , 2010, IEEE Journal of Solid-State Circuits.

[33]  Zuo-Min Tsai,et al.  A 50 to 70 GHz Power Amplifier Using 90 nm CMOS Technology , 2009, IEEE Microwave and Wireless Components Letters.

[34]  R. Plana,et al.  High-Gain and Linear 60-GHz Power Amplifier With a Thin Digital 65-nm CMOS Technology , 2013, IEEE Transactions on Microwave Theory and Techniques.

[35]  Thomas Quemerais,et al.  Design-in-Reliable Millimeter-Wave Power Amplifiers in a 65-nm CMOS Process , 2012, IEEE Transactions on Microwave Theory and Techniques.

[36]  Baudouin Martineau,et al.  A 60 GHz Power Amplifier With 14.5 dBm Saturation Power and 25% Peak PAE in CMOS 65 nm SOI , 2010, IEEE Journal of Solid-State Circuits.

[37]  Songcheol Hong,et al.  A predistortion linearizer using envelope-feedback technique with simplified carrier cancellation scheme for class-A and class-AB power amplifiers , 2000 .

[38]  Nai-Chung Kuo,et al.  Novel MMIC Power Amplifier Linearization Utilizing Input Reflected Nonlinearity , 2012, IEEE Transactions on Microwave Theory and Techniques.

[39]  Ali M. Niknejad,et al.  A compact 1V 18.6dBm 60GHz power amplifier in 65nm CMOS , 2011, 2011 IEEE International Solid-State Circuits Conference.

[40]  A. Scuderi,et al.  A 25 dBm Digitally Modulated CMOS Power Amplifier for WCDMA/EDGE/OFDM With Adaptive Digital Predistortion and Efficient Power Control , 2009, IEEE Journal of Solid-State Circuits.

[41]  S. C. Cripps,et al.  RF Power Amplifiers for Wireless Communications , 1999 .

[42]  J. S. Kenney,et al.  Compact Wideband Linear CMOS Variable Gain Amplifier for Analog-Predistortion Power Amplifiers , 2012, IEEE Transactions on Microwave Theory and Techniques.