Heterodimerization of G Protein-Coupled Receptors: Specificity and Functional Significance

G protein-coupled receptors (GPCRs) are cell surface receptors that mediate physiological responses to a diverse array of stimuli. GPCRs have traditionally been thought to act as monomers, but recent evidence suggests that GPCRs may form dimers (or higher-order oligomers) as part of their normal trafficking and function. In fact, certain GPCRs seem to have a strict requirement for heterodimerization to attain proper surface expression and functional activity. Even those GPCRs that do not absolutely require heterodimerization may still specifically associate with other GPCR subtypes, sometimes resulting in dramatic effects on receptor pharmacology, signaling, and/or internalization. Understanding the specificity and functional significance of GPCR heterodimerization is of tremendous clinical importance since GPCRs are the molecular targets for numerous therapeutic drugs.

[1]  E. Lakatta,et al.  Opioid peptide receptor stimulation reverses beta-adrenergic effects in rat heart cells. , 1997, The American journal of physiology.

[2]  L. F. Kolakowski,et al.  Coexpression of full-length gamma-aminobutyric acid(B) (GABA(B)) receptors with truncated receptors and metabotropic glutamate receptor 4 supports the GABA(B) heterodimer as the functional receptor. , 2000, The Journal of pharmacology and experimental therapeutics.

[3]  Horst Vogel,et al.  Oligomerization of the α1a- and α1b-Adrenergic Receptor Subtypes , 2003, Journal of Biological Chemistry.

[4]  Mario Mellado,et al.  Chemokine receptor homo‐ or heterodimerization activates distinct signaling pathways , 2001, The EMBO journal.

[5]  P. Marzullo,et al.  Efficacy of Combined Treatment with Lanreotide and Cabergoline in Selected Therapy-Resistant Acromegalic Patients , 2004, Pituitary.

[6]  D. Raju,et al.  Hetero-oligomerization between GABAA and GABAB Receptors Regulates GABAB Receptor Trafficking* , 2004, Journal of Biological Chemistry.

[7]  B. Borowsky,et al.  An in situ hybridization study of the distribution of the GABA(B2) protein mRNA in the rat CNS. , 1999, Brain research. Molecular brain research.

[8]  W. Bowen,et al.  Modulation of mu-mediated antinociception in the mouse involves opioid delta-2 receptors. , 1992, The Journal of pharmacology and experimental therapeutics.

[9]  Luigi F Agnati,et al.  Molecular Mechanisms and Therapeutical Implications of Intramembrane Receptor/Receptor Interactions among Heptahelical Receptors with Examples from the Striatopallidal GABA Neurons , 2003, Pharmacological Reviews.

[10]  P. Sokoloff,et al.  D2/D3 Dopamine Receptor Heterodimers Exhibit Unique Functional Properties* , 2001, The Journal of Biological Chemistry.

[11]  S. Schulz,et al.  Heterodimerization of Substance P and μ-Opioid Receptors Regulates Receptor Trafficking and Resensitization* , 2003, Journal of Biological Chemistry.

[12]  H. Zhong,et al.  α1-Adrenoceptor subtypes , 1999 .

[13]  T. Kohout,et al.  Homo- and Hetero-oligomerization of Thyrotropin-releasing Hormone (TRH) Receptor Subtypes , 2002, The Journal of Biological Chemistry.

[14]  J J Goedert,et al.  Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), ALIVE Study. , 1997, Science.

[15]  G. Demontis,et al.  G protein-linked receptors: pharmacological evidence for the formation of heterodimers. , 1999, The Journal of pharmacology and experimental therapeutics.

[16]  Michele Zoli,et al.  Coaggregation, Cointernalization, and Codesensitization of Adenosine A2A Receptors and Dopamine D2Receptors* , 2002, The Journal of Biological Chemistry.

[17]  A. Basbaum,et al.  Immunohistochemical localization of GABAB receptors in the rat central nervous system , 1999, The Journal of comparative neurology.

[18]  S. Russek,et al.  Molecular Identification of the Human GABABR2: Cell Surface Expression and Coupling to Adenylyl Cyclase in the Absence of GABABR1 , 1999, Molecular and Cellular Neuroscience.

[19]  C. Martínez-A,et al.  Blocking HIV‐1 infection via CCR5 and CXCR4 receptors by acting in trans on the CCR2 chemokine receptor , 2004, The EMBO journal.

[20]  J. Glowinski,et al.  Modulation by Monoamines of Somatostatin‐Sensitive Adenylate Cyclase on Neuronal and Glial Cells from the Mouse Brain in Primary Cultures , 1985, Journal of neurochemistry.

[21]  M. Bouvier,et al.  Hetero-oligomerization between beta2- and beta3-adrenergic receptors generates a beta-adrenergic signaling unit with distinct functional properties. , 2004, The Journal of biological chemistry.

[22]  R. Russell,et al.  The C-Terminal Domains of the GABAB Receptor Subunits Mediate Intracellular Trafficking But Are Not Required for Receptor Signaling , 2001, The Journal of Neuroscience.

[23]  Jean-François Mercier,et al.  Quantitative Assessment of β1- and β2-Adrenergic Receptor Homo- and Heterodimerization by Bioluminescence Resonance Energy Transfer* , 2002, The Journal of Biological Chemistry.

[24]  K. Eidne,et al.  G-protein coupled receptor oligomerization in neuroendocrine pathways , 2003, Frontiers in Neuroendocrinology.

[25]  U. Kumar,et al.  Agonist-dependent Dissociation of Human Somatostatin Receptor 2 Dimers , 2004, Journal of Biological Chemistry.

[26]  G. Tsujimoto,et al.  Subtype-specific differences in subcellular localization of alpha1-adrenoceptors: chlorethylclonidine preferentially alkylates the accessible cell surface alpha1-adrenoceptors irrespective of the subtype. , 1997, Molecular pharmacology.

[27]  S. Wilt,et al.  Heterodimerization of Calcium Sensing Receptors with Metabotropic Glutamate Receptors in Neurons* , 2001, The Journal of Biological Chemistry.

[28]  L. Devi,et al.  Dimerization of the delta opioid receptor: implication for a role in receptor internalization. , 1997, The Journal of biological chemistry.

[29]  T. Bonner,et al.  Distribution of the GABAB receptor subunit gb2 in rat CNS , 2000, Brain Research.

[30]  M. Pangalos,et al.  The expression of GABAB1 and GABAB2 receptor subunits in the cNS differs from that in peripheral tissues , 2000, Neuroscience.

[31]  S. Rees,et al.  Monitoring Receptor Oligomerization Using Time-resolved Fluorescence Resonance Energy Transfer and Bioluminescence Resonance Energy Transfer , 2001, The Journal of Biological Chemistry.

[32]  D. Devost,et al.  Homo‐ and Hetero‐Dimeric Complex Formations of the Human Oxytocin Receptor , 2004, Journal of neuroendocrinology.

[33]  R. Lefkowitz,et al.  Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. , 1993, Trends in pharmacological sciences.

[34]  P. D. de Jong,et al.  Positional cloning of the mouse saccharin preference (Sac) locus. , 2001, Chemical senses.

[35]  Y. Kusakabe,et al.  Molecular genetic identification of a candidate receptor gene for sweet taste. , 2001, Biochemical and biophysical research communications.

[36]  K. Minneman,et al.  Subtype-specific dimerization of alpha 1-adrenoceptors: effects on receptor expression and pharmacological properties. , 2003, Molecular pharmacology.

[37]  M. Hayden,et al.  Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy , 2002, Nature Genetics.

[38]  F. Marshall,et al.  GABA(B) receptors function as heterodimers. , 1999, Biochemical Society transactions.

[39]  E. Lakatta,et al.  β1/β2-Adrenergic Receptor Heterodimerization Regulates β2-Adrenergic Receptor Internalization and ERK Signaling Efficacy* , 2002, The Journal of Biological Chemistry.

[40]  J. Drews Genomic sciences and the medicine of tomorrow , 1996, Nature Biotechnology.

[41]  T. Hébert,et al.  Pharmacological characterization of putative beta1-beta2-adrenergic receptor heterodimers. , 2003, Canadian journal of physiology and pharmacology.

[42]  Ramesh C. Patel,et al.  The Role of Subtype-specific Ligand Binding and the C-tail Domain in Dimer Formation of Human Somatostatin Receptors* , 2004, Journal of Biological Chemistry.

[43]  B. Borowsky,et al.  GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. , 1998, Nature.

[44]  K. Fuxe,et al.  Adenosine A2A-dopamine D2 receptor-receptor heteromers. Targets for neuro-psychiatric disorders. , 2004, Parkinsonism & related disorders.

[45]  K. Minneman,et al.  Coupling efficiencies of human alpha 1-adrenergic receptor subtypes: titration of receptor density and responsiveness with inducible and repressible expression vectors. , 1996, Molecular pharmacology.

[46]  K. Ressler,et al.  Olfactory receptor surface expression is driven by association with the beta2-adrenergic receptor. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[47]  R. Doi,et al.  Interactions of opioid and chemokine receptors: oligomerization of mu, kappa, and delta with CCR5 on immune cells. , 2002, Experimental cell research.

[48]  H. Nakata,et al.  Heteromeric association creates a P2Y-like adenosine receptor , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[49]  M. Bouvier,et al.  Roles of G‐protein‐coupled receptor dimerization , 2004, EMBO reports.

[50]  M. Bouvier,et al.  Functional rescue of a constitutively desensitized beta2AR through receptor dimerization. , 1998, The Biochemical journal.

[51]  C. Hague,et al.  Heterodimerization with beta2-adrenergic receptors promotes surface expression and functional activity of alpha1D-adrenergic receptors. , 2005, The Journal of pharmacology and experimental therapeutics.

[52]  J. Reubi,et al.  Somatostatin Receptors , 1997, Trends in Endocrinology & Metabolism.

[53]  R. Tallarida,et al.  Antinociceptive interactions of opioid delta receptor agonists with morphine in mice: supra- and sub-additivity. , 1992, Life sciences.

[54]  M. Caron,et al.  Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and ß-arrestin proteins , 2002, Progress in Neurobiology.

[55]  A. García-España,et al.  Antisense oligodeoxynucleotides to opioid mu and delta receptors reduced morphine dependence in mice: role of delta-2 opioid receptors. , 1997, The Journal of pharmacology and experimental therapeutics.

[56]  C. Bousquet,et al.  Molecular Signaling of Somatostatin Receptors , 2004, Annals of the New York Academy of Sciences.

[57]  Enrico Gratton,et al.  Ligand binding to somatostatin receptors induces receptor-specific oligomer formation in live cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Lakshmi A. Devi,et al.  Heterodimerization of μ and δ Opioid Receptors: A Role in Opiate Synergy , 2000, The Journal of Neuroscience.

[59]  B. O'dowd,et al.  Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. , 2000, The Journal of biological chemistry.

[60]  R. Doms,et al.  Influence of the CCR2-V64I Polymorphism on Human Immunodeficiency Virus Type 1 Coreceptor Activity and on Chemokine Receptor Function of CCR2b, CCR3, CCR5, and CXCR4 , 1998, Journal of Virology.

[61]  R. Shigemoto,et al.  GABAB-receptor subtypes assemble into functional heteromeric complexes , 1998, Nature.

[62]  Peter Mombaerts,et al.  Genes and ligands for odorant, vomeronasal and taste receptors , 2004, Nature Reviews Neuroscience.

[63]  P. Portoghese,et al.  Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. , 1991, The Journal of pharmacology and experimental therapeutics.

[64]  Michel Bouvier,et al.  Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). , 2000 .

[65]  L. Devi,et al.  Heterodimerization of mu and delta opioid receptors: A role in opiate synergy. , 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  K. Fuxe,et al.  Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: Implications for striatal neuronal function , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[67]  P. Fossier,et al.  Monitoring of Ligand-independent Dimerization and Ligand-induced Conformational Changes of Melatonin Receptors in Living Cells by Bioluminescence Resonance Energy Transfer* 210 , 2002, The Journal of Biological Chemistry.

[68]  H. Weinstein,et al.  Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac , 2001, Nature Genetics.

[69]  F. Echeverri,et al.  Endoplasmic Reticulum Retention, Degradation, and Aggregation of Olfactory G‐Protein Coupled Receptors , 2003, Traffic.

[70]  R. Axel,et al.  A novel multigene family may encode odorant receptors: A molecular basis for odor recognition , 1991, Cell.

[71]  Jamie Fong,et al.  Regulation of Opioid Receptor Trafficking and Morphine Tolerance by Receptor Oligomerization , 2002, Cell.

[72]  H. Mosberg,et al.  Modulation of mu-mediated antinociception by delta agonists in the mouse: selective potentiation of morphine and normorphine by [D-Pen2,D-Pen5]enkephalin. , 1989, European journal of pharmacology.

[73]  N. Ryba,et al.  Putative Mammalian Taste Receptors A Class of Taste-Specific GPCRs with Distinct Topographic Selectivity , 1999, Cell.

[74]  H. Lother,et al.  Increased AT1 receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness , 2001, Nature Medicine.

[75]  F. Marshall,et al.  GABAB receptors - the first 7TM heterodimers. , 1999, Trends in pharmacological sciences.

[76]  C. Larsson,et al.  Acute effects of D1- and D2-receptor agonist and antagonist drugs on somatostatin binding, inhibition of adenylyl cyclase activity and accumulation of inositol 1,4,5-trisphosphate in the rat striatum. , 1997, Brain research. Molecular brain research.

[77]  J. Cairns,et al.  Chemokines and HIV-1 second receptors: The therapeutic connection , 1998, Nature Medicine.

[78]  Lakshmi A Devi,et al.  A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[79]  S. Schulz,et al.  Homo- and Heterodimerization of Somatostatin Receptor Subtypes , 2001, The Journal of Biological Chemistry.

[80]  K. Fuxe,et al.  New vistas on synaptic plasticity: the receptor mosaic hypothesis of the engram. , 1982, Medical biology.

[81]  M. Schaefer,et al.  Ligand-dependent Differences in the Internalization of Endothelin A and Endothelin B Receptor Heterodimers* , 2004, Journal of Biological Chemistry.

[82]  M. Bouvier,et al.  Hetero-oligomerization between β2- and β3-Adrenergic Receptors Generates a β-Adrenergic Signaling Unit with Distinct Functional Properties* , 2004, Journal of Biological Chemistry.

[83]  H. Vogel,et al.  Oligomerization of the alpha 1a- and alpha 1b-adrenergic receptor subtypes. Potential implications in receptor internalization. , 2003, The Journal of biological chemistry.

[84]  G. Gisselmann,et al.  Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster , 2005, Nature Neuroscience.

[85]  T. Yaksh,et al.  Isobolographic and dose-response analyses of the interaction between intrathecal mu and delta agonists: effects of naltrindole and its benzofuran analog (NTB). , 1992, The Journal of pharmacology and experimental therapeutics.

[86]  F. Marshall,et al.  Heterodimerization of G-protein-coupled receptors in the CNS. , 2001, Current opinion in pharmacology.

[87]  H. Nakata,et al.  Oligomerization of adenosine A2A and dopamine D2 receptors in living cells. , 2003, Biochemical and biophysical research communications.

[88]  C. Martínez-A,et al.  Chemokine control of HIV-1 infection , 1999, Nature.

[89]  Cairns Js,et al.  Chemokines and HIV-1 second receptors: The therapeutic connection , 1998 .

[90]  Michel Bouvier,et al.  Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. , 2002, Annual review of pharmacology and toxicology.

[91]  U. Kumar,et al.  Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. , 2000, Science.

[92]  N. Ryba,et al.  Mammalian Sweet Taste Receptors , 2001, Cell.

[93]  N. Ryba,et al.  The Receptors for Mammalian Sweet and Umami Taste , 2003, Cell.

[94]  H. Lother,et al.  The Angiotensin II AT2 Receptor Is an AT1Receptor Antagonist* , 2001, The Journal of Biological Chemistry.

[95]  C. Hague,et al.  Cell Surface Expression of α1D-Adrenergic Receptors Is Controlled by Heterodimerization with α1B-Adrenergic Receptors* , 2004, Journal of Biological Chemistry.

[96]  Chongguang Chen,et al.  Heterodimerization and cross-desensitization between the mu-opioid receptor and the chemokine CCR5 receptor. , 2004, European journal of pharmacology.

[97]  B. Bettler,et al.  Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. , 1997, Nature.

[98]  L. Prézeau,et al.  C-Terminal Interaction Is Essential for Surface Trafficking But Not for Heteromeric Assembly of GABAB Receptors , 2001, The Journal of Neuroscience.

[99]  Lakshmi A. Devi,et al.  A role for heterodimerization of μ and δ opiate receptors in enhancing morphine analgesia , 2004 .

[100]  Jean-François Mercier,et al.  Homodimerization of the β2-Adrenergic Receptor as a Prerequisite for Cell Surface Targeting* , 2004, Journal of Biological Chemistry.

[101]  P. Delagrange,et al.  Preferential Formation of MT1/MT2 Melatonin Receptor Heterodimers with Distinct Ligand Interaction Properties Compared with MT2 Homodimers , 2004, Molecular Pharmacology.

[102]  S. O’Brien,et al.  Influence of the CCR 2V 64 I Polymorphism on Human Immunodeficiency Virus Type 1 Coreceptor Activity and on Chemokine Receptor Function of CCR 2 b , CCR 3 , CCR 5 , and CXCR 4 , 1998 .

[103]  F. Ciruela,et al.  Metabotropic Glutamate 1α and Adenosine A1 Receptors Assemble into Functionally Interacting Complexes* , 2001, The Journal of Biological Chemistry.

[104]  K. Fuxe,et al.  Evidence for Adenosine/Dopamine Receptor Interactions: Indications for Heteromerization , 2000, Neuropsychopharmacology.

[105]  Susan R. George,et al.  G-Protein-coupled receptor oligomerization and its potential for drug discovery , 2002, Nature Reviews Drug Discovery.

[106]  A. Charara,et al.  An electron microscope immunocytochemical study of GABAB R2 receptors in the monkey basal ganglia: A comparative analysis with GABAB R1 receptor distribution , 2004, The Journal of comparative neurology.

[107]  J F Battey,et al.  Identification of a novel member of the T1R family of putative taste receptors , 2001, Journal of neurochemistry.

[108]  Michel Bouvier,et al.  Heterodimerization of V1a and V2 vasopressin receptors determines the interaction with beta-arrestin and their trafficking patterns. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[109]  Jean-François Mercier,et al.  Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. , 2002, The Journal of biological chemistry.

[110]  Francesca Fanelli,et al.  Adenosine A2A-Dopamine D2 Receptor-Receptor Heteromerization , 2003, Journal of Biological Chemistry.

[111]  Michel Bouvier,et al.  A Peptide Derived from a β2-Adrenergic Receptor Transmembrane Domain Inhibits Both Receptor Dimerization and Activation* , 1996, The Journal of Biological Chemistry.

[112]  B. O'dowd,et al.  Serotonin 5‐HT1B and 5‐HT1D receptors form homodimers when expressed alone and heterodimers when co‐expressed , 1999, FEBS letters.

[113]  E. Lakatta,et al.  'Cross talk' between opioid peptide and adrenergic receptor signaling in isolated rat heart. , 1997, Circulation.

[114]  Graeme Milligan,et al.  Dimers of Class A G Protein-coupled Receptors Function via Agonist-mediated Trans-activation of Associated G Proteins* , 2003, Journal of Biological Chemistry.

[115]  Leslie B. Vosshall,et al.  Or83b Encodes a Broadly Expressed Odorant Receptor Essential for Drosophila Olfaction , 2004, Neuron.

[116]  J. Wess,et al.  Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular "cross-talk" between G-protein-linked receptors. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[117]  N. Lee,et al.  Delta opioid receptor enhancement of mu opioid receptor-induced antinociception in spinal cord. , 1998, The Journal of pharmacology and experimental therapeutics.

[118]  J. Bolam,et al.  Cellular and sub-cellular localisation of GABA(B1) and GABA(B2) receptor proteins in the rat cerebellum. , 2000, Brain research. Molecular brain research.

[119]  B. Mouillac,et al.  Oxytocin and vasopressin V1a and V2 receptors form constitutive homo- and heterodimers during biosynthesis. , 2003, Molecular endocrinology.

[120]  E. Lakatta,et al.  Cross-talk of opioid peptide receptor and beta-adrenergic receptor signalling in the heart. , 2004, Cardiovascular research.

[121]  G. Tsujimoto,et al.  Differences in the cellular localization and agonist-mediated internalization properties of the alpha(1)-adrenoceptor subtypes. , 2002, Molecular pharmacology.

[122]  L. Devi,et al.  Oligomerization of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[123]  Graeme Milligan,et al.  Homo- and hetero-oligomeric interactions between G-protein-coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences. , 2002, The Biochemical journal.

[124]  L. Jan,et al.  Immunohistochemical localization of GABA(B) receptors in the rat central nervous system. , 1999, The Journal of comparative neurology.

[125]  M. Bouvier,et al.  Receptor activity‐independent recruitment of βarrestin2 reveals specific signalling modes , 2004, The EMBO journal.

[126]  S. Liberles,et al.  A candidate taste receptor gene near a sweet taste locus , 2001, Nature Neuroscience.

[127]  C. Hague,et al.  Heterodimerization with β2-Adrenergic Receptors Promotes Surface Expression and Functional Activity of α1D-Adrenergic Receptors , 2005, Journal of Pharmacology and Experimental Therapeutics.

[128]  M. Millan,et al.  Potent activation of dopamine D3/D2 heterodimers by the antiparkinsonian agents, S32504, pramipexole and ropinirole , 2003, Journal of neurochemistry.

[129]  Lakshmi A Devi,et al.  Opioids and Their Complicated Receptor Complexes , 2000, Neuropsychopharmacology.

[130]  L. Devi,et al.  Functional interactions between mu opioid and alpha 2A-adrenergic receptors. , 2003, Molecular pharmacology.

[131]  G Burnstock,et al.  Receptors for purines and pyrimidines. , 1998, Pharmacological reviews.

[132]  Kenneth A. Jones,et al.  GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2 , 1998, Nature.

[133]  Jennifer Ong,et al.  GABAB Receptors , 1997 .

[134]  Y. Kuroda,et al.  Hetero‐oligomerization of adenosine A1 receptors with P2Y1 receptors in rat brains , 2002, FEBS letters.

[135]  Jilly F. Evans,et al.  Identification of a GABAB Receptor Subunit, gb2, Required for Functional GABAB Receptor Activity* , 1999, The Journal of Biological Chemistry.

[136]  S. Moss,et al.  Intracellular Retention of Recombinant GABABReceptors* , 1998, The Journal of Biological Chemistry.

[137]  T. Fenton,et al.  Oligomerization of G-protein-coupled Receptors Shown by Selective Co-immunoprecipitation* , 2002, The Journal of Biological Chemistry.

[138]  E I Canela,et al.  Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[139]  Graeme Milligan,et al.  G Protein-Coupled Receptor Dimerization: Function and Ligand Pharmacology , 2004, Molecular Pharmacology.

[140]  G. Köhr,et al.  Role of heteromer formation in GABAB receptor function. , 1999, Science.

[141]  N. H. Lee,et al.  Homodimerization and heterodimerization of S1P/EDG sphingosine-1-phosphate receptors. , 2002, Biochimica et biophysica acta.

[142]  M. Lerner,et al.  Functional expression of olfactory-adrenergic receptor chimeras and intracellular retention of heterologously expressed olfactory receptors. , 1997, Brain research. Molecular brain research.

[143]  Alan Wise,et al.  Heterodimerization is required for the formation of a functional GABAB receptor , 1998, Nature.

[144]  R. Moon,et al.  Mutant Frizzled 4 associated with vitreoretinopathy traps wild-type Frizzled in the endoplasmic reticulum by oligomerization , 2004, Nature Cell Biology.

[145]  H. Lother,et al.  AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration , 2000, Nature.

[146]  E. Lakatta,et al.  Beta 1/beta 2-adrenergic receptor heterodimerization regulates beta 2-adrenergic receptor internalization and ERK signaling efficacy. , 2002, The Journal of biological chemistry.

[147]  Manuela Pfeiffer,et al.  Heterodimerization of Somatostatin and Opioid Receptors Cross-modulates Phosphorylation, Internalization, and Desensitization* , 2002, The Journal of Biological Chemistry.

[148]  H. Friesen,et al.  Somatostatin and thyrotropin releasing hormone: Central effect on sleep and motor system , 1976, Pharmacology Biochemistry and Behavior.

[149]  L. Miller,et al.  Heterodimerization of Type A and B Cholecystokinin Receptors Enhance Signaling and Promote Cell Growth* , 2003, Journal of Biological Chemistry.

[150]  H. Nakata,et al.  Agonist‐promoted heteromeric oligomerization between adenosine A1 and P2Y1 receptors in living cells , 2002, FEBS letters.

[151]  Lakshmi A. Devi,et al.  G-protein-coupled receptor heterodimerization modulates receptor function , 1999, Nature.

[152]  U. Kumar,et al.  Subtypes of the Somatostatin Receptor Assemble as Functional Homo- and Heterodimers* , 2000, The Journal of Biological Chemistry.

[153]  B. O'dowd,et al.  Dopamine D1 and D2 Receptor Co-activation Generates a Novel Phospholipase C-mediated Calcium Signal* , 2004, Journal of Biological Chemistry.

[154]  A. Lau,et al.  Heterodimerization of α2A- and β1-Adrenergic Receptors* , 2003, The Journal of Biological Chemistry.