Resolvable Group Divisible Designs with Large Groups
暂无分享,去创建一个
[1] Peter J. Dukes,et al. An existence theory for loopy graph decompositions , 2011 .
[2] Gennian Ge,et al. Asymptotic results on the existence of 4‐RGDDs and uniform 5‐GDDs , 2005 .
[3] Richard M. Wilson,et al. Decompositions of Edge-Colored Complete Graphs , 2000, J. Comb. Theory, Ser. A.
[4] D. K. Ray-Chaudhuri,et al. The Existence of Resolvable Block Designs , 1973 .
[5] Kazuhiko Ushio,et al. Bipartite decomposition of complete multipartite graphs , 1981 .
[6] Rolf S. Rees,et al. Two new direct product-type constructions for resolvable group-divisible designs , 1993 .
[7] C. Colbourn,et al. The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.
[8] Hedvig Mohácsy,et al. The asymptotic existence of group divisible designs of large order with index one , 2011, J. Comb. Theory, Ser. A.
[9] Alan C. H. Ling,et al. Asymptotic Existence of Resolvable Graph Designs , 2007, Canadian Mathematical Bulletin.
[10] Richard M. Wilson,et al. An Existence Theory for Pairwise Balanced Designs, III: Proof of the Existence Conjectures , 1975, J. Comb. Theory, Ser. A.
[11] Paul Erdös,et al. On the Maximal Number of Pairwise Orthogonal Latin Squares of a Given Order , 1960, Canadian Journal of Mathematics.
[12] Richard M. Wilson,et al. An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures , 1972, J. Comb. Theory, Ser. A.
[13] Justin H. C. Chan,et al. Asymptotic existence results on specific graph decompositions , 2010 .
[14] Richard M. Wilson,et al. Concerning the number of mutually orthogonal latin squares , 1974, Discret. Math..
[15] Richard M. Wilson,et al. Constructions and Uses of Pairwise Balanced Designs , 1975 .
[16] Charles J. Colbourn,et al. Covering and packing for pairs , 2013, J. Comb. Theory, Ser. A.
[17] S. A. VANSTONE,et al. Doubly resolvable designs , 1980, Discret. Math..