An Algorithm for Comparing Similarity Between Two Trees

An important problem in geometric computing is defining and computing similarity between two geometric shapes, e.g. point sets, curves and surfaces, etc. Important geometric and topological information of many shapes can be captured by defining a tree structure on them (e.g. medial axis and contour trees). Hence, it is natural to study the problem of comparing similarity between trees. We study gapped edit distance between two ordered labeled trees, first proposed by Touzet \cite{Touzet2003}. Given two binary trees $T_{1}$ and $T_{2}$ with $m$ and $n$ nodes. We compute the general gap edit distance in $O(m^{3}n^{2} + m^{2}n^{3})$ time. The computation of this distance in the case of arbitrary trees has shown to be NP-hard \cite{Touzet2003}. We also give an algorithm for computing the complete subtree gap edit distance, which can be applied to comparing contour trees of terrains in $\mathbb{R}^{3}$.

[1]  Ann Dooms,et al.  Report on Digital Image Processing for Art Historians , 2009 .

[2]  Weimin Chen,et al.  New Algorithm for Ordered Tree-to-Tree Correction Problem , 2001, J. Algorithms.

[3]  Gad M. Landau,et al.  Locality and Gaps in RNA Comparison , 2007, J. Comput. Biol..

[4]  Hélène Touzet,et al.  How to Compare Arc-Annotated Sequences: The Alignment Hierarchy , 2006, SPIRE.

[5]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[6]  Kuo-Chung Tai,et al.  The Tree-to-Tree Correction Problem , 1979, JACM.

[7]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[8]  Sariel Har-Peled,et al.  Approximating the Fréchet Distance for Realistic Curves in Near Linear Time , 2010, Discrete & Computational Geometry.

[9]  Hélène Touzet,et al.  Decomposition algorithms for the tree edit distance problem , 2005, J. Discrete Algorithms.

[10]  Christopher M. Gold,et al.  Spatially ordered networks and topographic reconstructions , 1987, Int. J. Geogr. Inf. Sci..

[11]  M. Tahar Kechadi,et al.  Preprocessing Techniques for Online Handwriting Recognition , 2009, Intelligent Text Categorization and Clustering.

[12]  Afra Zomorodian,et al.  Computational topology , 2010 .

[13]  Arnold P. Boedihardjo,et al.  Model-driven matching and segmentation of trajectories , 2013, SIGSPATIAL/GIS.

[15]  Tosiyasu L. Kunii,et al.  Algorithms for Extracting Correct Critical Points and Constructing Topological Graphs from Discrete Geographical Elevation Data , 1995, Comput. Graph. Forum.

[16]  Heikki Mannila,et al.  Ordered and Unordered Tree Inclusion , 1995, SIAM J. Comput..

[17]  T. Kanade,et al.  Extracting topographic terrain features from elevation maps , 1994 .

[18]  Valerio Pascucci,et al.  Contour trees and small seed sets for isosurface traversal , 1997, SCG '97.

[19]  Pankaj K. Agarwal,et al.  I/O-efficient batched union-find and its applications to terrain analysis , 2006, SCG '06.

[20]  W. Walthen-Dunn A Transformation for Extracting New De scriptors of Shape ' , in , 2017 .

[21]  Philip N. Klein,et al.  Computing the Edit-Distance between Unrooted Ordered Trees , 1998, ESA.

[22]  João Meidanis,et al.  Introduction to computational molecular biology , 1997 .

[23]  Mark de Berg,et al.  Computational Geometry: Algorithms and Applications, Second Edition , 2000 .

[24]  Tao Jiang,et al.  Alignment of Trees - An Alternative to Tree Edit , 1994, Theor. Comput. Sci..

[25]  Kaizhong Zhang,et al.  Tree pattern matching , 1997, Pattern Matching Algorithms.

[26]  Mark de Berg,et al.  Computational geometry: algorithms and applications, 3rd Edition , 1997 .

[27]  Helmut Alt,et al.  Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..

[28]  Robert Giegerich,et al.  Forest Alignment with Affine Gaps and Anchors , 2011, CPM.

[29]  M. Tahar Kechadi,et al.  Preprocessing Techniques for Online Handwriting Recognition , 2007, Seventh International Conference on Intelligent Systems Design and Applications (ISDA 2007).

[30]  Arnold P. Boedihardjo,et al.  Computing Similarity between a Pair of Trajectories , 2013, ArXiv.

[31]  Kaizhong Zhang,et al.  Comparing multiple RNA secondary structures using tree comparisons , 1990, Comput. Appl. Biosci..

[32]  Mikhail N. Vyalyi,et al.  Construction of contour trees in 3D in O(n log n) steps , 1998, SCG '98.

[33]  Micha Sharir,et al.  Algorithmic motion planning in robotics , 1991, Computer.

[34]  Kaizhong Zhang,et al.  Simple Fast Algorithms for the Editing Distance Between Trees and Related Problems , 1989, SIAM J. Comput..

[35]  Erik D. Demaine,et al.  An optimal decomposition algorithm for tree edit distance , 2006, TALG.

[36]  Roger L. Boyell,et al.  Hybrid techniques for real-time radar simulation , 1963, AFIPS '63 (Fall).

[37]  Micha Sharir,et al.  A Survey of Motion Planning and Related Geometric Algorithms , 1988, Artificial Intelligence.

[38]  Thomas A. Funkhouser,et al.  Algorithms to automatically quantify the geometric similarity of anatomical surfaces , 2011, Proceedings of the National Academy of Sciences.

[39]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[40]  Kaizhong Zhang,et al.  On the Editing Distance Between Unordered Labeled Trees , 1992, Inf. Process. Lett..

[41]  Hélène Touzet,et al.  Analysis of Tree Edit Distance Algorithms , 2003, CPM.

[42]  I. Daubechies,et al.  Conformal Wasserstein distances: Comparing surfaces in polynomial time , 2011, 1103.4408.

[43]  Herbert Edelsbrunner,et al.  Extreme Elevation on a 2-Manifold , 2004, SCG '04.

[44]  Hélène Touzet,et al.  Tree edit distance with gaps , 2003, Inf. Process. Lett..

[45]  Tonghua Su,et al.  Chinese Handwriting Recognition: An Algorithmic Perspective , 2013, Springer Briefs in Electrical and Computer Engineering.

[46]  I K Fodor,et al.  A Survey of Dimension Reduction Techniques , 2002 .

[47]  Stanley M. Selkow,et al.  The Tree-to-Tree Editing Problem , 1977, Inf. Process. Lett..

[48]  Philip Bille,et al.  A survey on tree edit distance and related problems , 2005, Theor. Comput. Sci..

[49]  Alexander Russell,et al.  Computational topology: ambient isotopic approximation of 2-manifolds , 2003, Theor. Comput. Sci..