Hermite WENO Schemes and Their Application as Limiters for Runge-Kutta Discontinuous Galerkin Method, III: Unstructured Meshes

In [J. Comput. Phys. 193:115–135, 2004] and [Comput. Fluids 34:642–663, 2005], Qiu and Shu developed a class of high order weighted essentially non-oscillatory (WENO) schemes based on Hermite polynomials, termed HWENO (Hermite WENO) schemes, for solving nonlinear hyperbolic conservation law systems, and applied them as limiters for the Runge-Kutta discontinuous Galerkin (RKDG) methods on structured meshes. In this continuation paper, we extend the method to solve two dimensional problems on unstructured meshes. The emphasis is again on the application of such HWENO finite volume methodology as limiters for RKDG methods to maintain compactness of RKDG methods. Numerical experiments for two dimensional Burgers’ equation and Euler equations of compressible gas dynamics are presented to show the effectiveness of these methods.

[1]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[2]  J. Flaherty,et al.  Parallel, adaptive finite element methods for conservation laws , 1994 .

[3]  Chi-Wang Shu TVB uniformly high-order schemes for conservation laws , 1987 .

[4]  Jianxian Qiu,et al.  On the construction, comparison, and local characteristic decomposition for high-Order central WENO schemes , 2002 .

[5]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[6]  T. Yabe,et al.  Exactly conservative semi-Lagrangian scheme for multi-dimensional hyperbolic equations with directional splitting technique , 2001 .

[7]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[8]  Chi-Wang Shu,et al.  A technique of treating negative weights in WENO schemes , 2000 .

[9]  J. Remacle,et al.  Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws , 2004 .

[10]  Bernardo Cockburn,et al.  The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws , 1988 .

[11]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[12]  Jianxian Qiu,et al.  Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case , 2004 .

[13]  Rainald Löhner,et al.  A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids , 2007, J. Comput. Phys..

[14]  G. Russo,et al.  Central WENO schemes for hyperbolic systems of conservation laws , 1999 .

[15]  Chi-Wang Shu,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[16]  O. Friedrich,et al.  Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .

[17]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[18]  Pierre Sagaut,et al.  A problem-independent limiter for high-order Runge—Kutta discontinuous Galerkin methods , 2001 .

[19]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[20]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[21]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[22]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[23]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[24]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .

[25]  A. Edelman,et al.  Nonnegativity-, monotonicity-, or convexity-preserving cubic and quintic Hermite interpolation , 1989 .

[26]  Michael Dumbser,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[27]  Jianxian Qiu,et al.  Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: Two dimensional case , 2005 .

[28]  Takashi Yabe,et al.  Cubic interpolated pseudo-particle method (CIP) for solving hyperbolic-type equations , 1985 .

[29]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[30]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[31]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..