Morphological variation of layer III pyramidal neurones in the occipitotemporal pathway of the macaque monkey visual cortex.

We compared the morphological characteristics of layer III pyramidal neurones in different visual areas of the occipitotemporal cortical 'stream', which processes information related to object recognition in the visual field (including shape, colour and texture). Pyramidal cells were intracellularly injected with Lucifer Yellow in cortical slices cut tangential to the cortical layers, allowing quantitative comparisons of dendritic field morphology, spine density and cell body size between the blobs and interblobs of the primary visual area (V1), the interstripe compartments of the second visual area (V2), the fourth visual area (V4) and cytoarchitectonic area TEO. We found that the tangential dimension of basal dendritic fields of layer III pyramidal neurones increases from caudal to rostral visual areas in the occipitotemporal pathway, such that TEO cells have, on average, dendritic fields spanning an area 5-6 times larger than V1 cells. In addition, the data indicate that V1 cells located within blobs have significantly larger dendritic fields than those of interblob cells. Sholl analysis of dendritic fields demonstrated that pyramidal cells in V4 and TEO are more complex (i.e. exhibit a larger number of branches at comparable distances from the cell body) than cells in V1 or V2. Moreover, this analysis demonstrated that the dendrites of many cells in V1 cluster along specific axes, while this tendency is less marked in extrastriate areas. Most notably, there is a relatively large proportion of neurones with 'morphologically orientation-biased' dendritic fields (i.e. branches tend to cluster along two diametrically opposed directions from the cell body) in the interblobs in V1, as compared with the blobs in V1 and extrastriate areas. Finally, counts of dendritic spines along the length of basal dendrites revealed similar peak spine densities in the blobs and the interblobs of V1 and in the V2 interstripes, but markedly higher spine densities in V4 and TEO. Estimates of the number of dendritic spines on the basal dendritic fields of layer III pyramidal cells indicate that cells in V2 have on average twice as many spines as V1 cells, that V4 cells have 3.8 times as many spines as V1 cells, and that TEO cells have 7.5 times as many spines as V1 cells. These findings suggest the possibility that the complex response properties of neurones in rostral stations in the occipitotemporal pathway may, in part, be attributed to their larger and more complex basal dendritic fields, and to the increase in both number and density of spines on their basal dendrites.

[1]  G. Blasdel,et al.  Physiological organization of layer 4 in macaque striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  Leslie G. Ungerleider,et al.  Visual topography of area TEO in the macaque , 1991, The Journal of comparative neurology.

[3]  Trichur Raman Vidyasagar,et al.  Multiple mechanisms underlying the orientation selectivity of visual cortical neurones , 1996, Trends in Neurosciences.

[4]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[5]  K Fleischhauer [The tangential organization of the cat motor cortex]. , 1978, Verhandlungen der Anatomischen Gesellschaft.

[6]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[7]  E. G. Jones,et al.  Varieties and distribution of non‐pyramidal cells in the somatic sensory cortex of the squirrel monkey , 1975, The Journal of comparative neurology.

[8]  U. Eysel,et al.  GABA-induced inactivation of functionally characterized sites in cat visual cortex (area 18): effects on direction selectivity. , 1996, Journal of neurophysiology.

[9]  Karl R. Gegenfurtner,et al.  Interaction of motion and color in the visual pathways , 1996, Trends in Neurosciences.

[10]  I Fujita,et al.  Intrinsic connections in the macaque inferior temporal cortex , 1996, The Journal of comparative neurology.

[11]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[12]  R. Chase,et al.  Comparative morphology of three types of projection‐identified pyramidal neurons in the superficial layers of cat visual cortex , 1996, The Journal of comparative neurology.

[13]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[14]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[15]  M. Colonnier THE TANGENTIAL ORGANIZATION OF THE VISUAL CORTEX. , 1964, Journal of anatomy.

[16]  M G Rosa,et al.  Comparison of dendritic fields of layer III pyramidal neurons in striate and extrastriate visual areas of the marmoset: a Lucifer yellow intracellular injection. , 1996, Cerebral cortex.

[17]  Kathleen S. Rockland,et al.  Elements of Cortical Architecture , 1997 .

[18]  J. Horton,et al.  Intrinsic Variability of Ocular Dominance Column Periodicity in Normal Macaque Monkeys , 1996, The Journal of Neuroscience.

[19]  G. Blasdel,et al.  Intrinsic connections of macaque striate cortex: axonal projections of cells outside lamina 4C , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  R. Desimone,et al.  Spectral properties of V4 neurons in the macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  Y. Miyashita,et al.  The role of a thiol protease in the proteolysis of connectin in rabbit skeletal muscle myofibrils , 1993 .

[22]  D. C. Van Essen,et al.  Concurrent processing streams in monkey visual cortex , 1988, Trends in Neurosciences.

[23]  G. Blasdel,et al.  Intrinsic connections of macaque striate cortex: afferent and efferent connections of lamina 4C , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  Jelliffe Vergleichende Lokalisationslehre der Grosshirnrinde , 1910 .

[25]  D. Hubel,et al.  Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey , 1981, Nature.

[26]  J. B. Levitt,et al.  Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. , 1993, Cerebral cortex.

[27]  J. Kaas,et al.  Interhemispheric connections in neonatal owl monkeys (Aotus trivirgatus) and galagos (Galago crassicaudatus) , 1994, Brain Research.

[28]  A. Leventhal,et al.  Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  J. Matsubara,et al.  Confocal microscopic study of the dendritic organization of patchy, intrinsic neurons in area 18 of the cat. , 1993, Cerebral cortex.

[30]  U. Eysel,et al.  GABA-induced inactivation of functionally characterized sites in cat striate cortex: Effects on orientation tuning and direction selectivity , 1997, Visual Neuroscience.

[31]  U. Eysel,et al.  Cellular organization of reciprocal patchy networks in layer III of cat visual cortex (area 17) , 1992, Neuroscience.

[32]  J. Lund Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta) , 1973, The Journal of comparative neurology.

[33]  D. Ts'o,et al.  Visual topography in primate V2: multiple representation across functional stripes , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  S. Levay,et al.  The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  V. Casagrande,et al.  Parallel pathways in macaque monkey striate cortex: anatomically defined columns in layer III. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Lübke,et al.  Intracellular lucifer yellow injection in fixed brain slices combined with retrograde tracing, light and electron microscopy , 1989, Neuroscience.

[37]  Vivien A. Casagrande,et al.  The Afferent, Intrinsic, and Efferent Connections of Primary Visual Cortex in Primates , 1994 .

[38]  J. B. Levitt,et al.  Intrinsic lattice connections of macaque monkey visual cortical area V4 , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  C. Gross,et al.  Visuotopic organization and extent of V3 and V4 of the macaque , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  D. J. Felleman,et al.  Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. , 1987, Journal of neurophysiology.

[41]  K. Rockland,et al.  Cortical connections of the occipital lobe in the rhesus monkey: Interconnections between areas 17, 18, 19 and the superior temporal sulcus , 1981, Brain Research.

[42]  M. Ogren,et al.  The neurological organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in old world and new world primates , 1978, The Journal of comparative neurology.

[43]  T. Bonhoeffer,et al.  Relationship Between Lateral Inhibitory Connections and the Topography of the Orientation Map in Cat Visual Cortex , 1994, The European journal of neuroscience.

[44]  J. Kaas,et al.  Interhemispheric connections of visual cortex of owl monkeys (Aotus trivirgatus), marmosets (Callithrix jacchus), and galagos (Galago crassicaudatus) , 1984, The Journal of comparative neurology.

[45]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[46]  R Gattass,et al.  Cortical afferents of visual area MT in the Cebus monkey: Possible homologies between New and old World monkeys , 1993, Visual Neuroscience.

[47]  J. Kaas Why Does the Brain Have So Many Visual Areas? , 1989, Journal of Cognitive Neuroscience.

[48]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[49]  J. Szentágothai The ‘module-concept’ in cerebral cortex architecture , 1975, Brain Research.

[50]  D. Fitzpatrick,et al.  The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus) , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  V. Casagrande,et al.  Intrinsic connections of layer III of striate cortex in squirrel monkey and bush baby: Correlations with patterns of cytochrome oxidase , 1993, The Journal of comparative neurology.

[52]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  G. Elston,et al.  The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. , 1997, Cerebral cortex.

[54]  M. Silverman,et al.  Functional organization of the second cortical visual area in primates. , 1983, Science.

[55]  M. Rosa Visuotopic Organization of Primate Extrastriate Cortex , 1997 .

[56]  J. Kaas,et al.  Cortical integration of parallel pathways in the visual system of primates , 1989, Brain Research.

[57]  Y. Miyashita,et al.  Configurational encoding of complex visual forms by single neurons of monkey temporal cortex , 1993, Neuropsychologia.

[58]  B. Lia,et al.  Distribution of neurons projecting to the superior colliculus correlates with thick cytochrome oxidase stripes in macaque visual area V2 , 1997, The Journal of comparative neurology.

[59]  T. Wiesel,et al.  Clustered intrinsic connections in cat visual cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  K. Rockland,et al.  A reticular pattern of intrinsic connections in primate area V2 (area 18) , 1985, The Journal of comparative neurology.

[61]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[62]  L. Martı́nez-Millán,et al.  Pyramidal and nonpyramidal callosal cells in the striate cortex of the adult rat , 1994, The Journal of comparative neurology.

[63]  J. Bullier,et al.  Parallel versus serial processing: new vistas on the distributed organization of the visual system , 1995, Current Opinion in Neurobiology.

[64]  Leslie G. Ungerleider,et al.  Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque , 1990, The Journal of comparative neurology.

[65]  J Bullier,et al.  Organization of the callosal connections of visual areas v1 and v2 in the macaque monkey , 1986, The Journal of comparative neurology.

[66]  G. Einstein,et al.  Intracellular injection of Lucifer yellow into cortical neurons in lightly fixed sections and its application to human autopsy material , 1988, Journal of Neuroscience Methods.

[67]  P. D. Spear,et al.  Effects of aging on numbers and sizes of neurons in histochemically defined subregions of monkey striate cortex , 1997, The Anatomical record.

[68]  C. Gross,et al.  Visual topography of V2 in the macaque , 1981, The Journal of comparative neurology.

[69]  Jean Bullier,et al.  The Role of Area 17 in the Transfer of Information to Extrastriate Visual Cortex , 1994 .

[70]  J. Kaas,et al.  Ocular dominance columns in area 17 of Old World macaque and talapoin monkeys: Complete reconstructions and quantitative analyses , 1992, Visual Neuroscience.

[71]  V. Casagrande,et al.  Direct W‐like geniculate projections to the cytochrome oxidase (CO) blobs in primate visual cortex: Axon morphology , 1992, The Journal of comparative neurology.

[72]  J. Tigges,et al.  Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in squirrel monkey (Saimiri) , 1981, The Journal of comparative neurology.

[73]  J. B. Levitt,et al.  Intrinsic cortical connections in macaque visual area V2: Evidence for interaction between different functional streams , 1994, The Journal of comparative neurology.

[74]  G. Elston,et al.  Neuronal composition and morphology in layer IV of two vibrissal barrel subfields of rat cortex. , 1997, Cerebral cortex.

[75]  W. B. Spatz,et al.  Morphology and connections of neurons in area 17 projecting to the extrastriate areas mt and 19DM and to the superior colliculus in the monkey Callithrix jacchus , 1995, The Journal of comparative neurology.

[76]  J. Bolz,et al.  Relationships between dendritic morphology and cytochrome oxidase compartments in monkey striate cortex , 1992, The Journal of comparative neurology.

[77]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[78]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[79]  Y. Diao,et al.  Dendritic morphology of visual callosal neurons in the golden hamster. , 1991, Brain, behavior and evolution.

[80]  J. Boyd,et al.  Intrinsic connections in cat visual cortex: a combined anterograde and retrograde tracing study , 1991, Brain Research.

[81]  S. Levay,et al.  Morphological and immunocytochemical observations on the visual callosal projections in the cat , 1988, The Journal of comparative neurology.

[82]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[83]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[84]  D. V. van Essen,et al.  The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[85]  Leslie G. Ungerleider,et al.  Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. , 1994, Cerebral cortex.

[86]  D. V. van Essen,et al.  Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[87]  D. Fitzpatrick,et al.  Laminar organization of geniculocortical projections in Galago senegalensis and Aotus trivirgatus , 1985, The Journal of comparative neurology.

[88]  J. Eccles The Cerebral Neocortex , 1984 .

[89]  K. Nakamura,et al.  Mnemonic firing of neurons in the monkey temporal pole during a visual recognition memory task. , 1995, Journal of neurophysiology.

[90]  R. Malach,et al.  Cortical hierarchy reflected in the organization of intrinsic connections in macaque monkey visual cortex , 1993, The Journal of comparative neurology.

[91]  Leslie G. Ungerleider,et al.  Cortical connections of inferior temporal area TEO in macaque monkeys , 1993, The Journal of comparative neurology.

[92]  R. Desimone,et al.  The representation of stimulus familiarity in anterior inferior temporal cortex. , 1993, Journal of neurophysiology.

[93]  K. Rockland,et al.  Divergent feedback connections from areas V4 and TEO in the macaque , 1994, Visual Neuroscience.

[94]  D. Ts'o,et al.  The organization of chromatic and spatial interactions in the primate striate cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[95]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[96]  G. Bonin,et al.  The neocortex of Macaca mulatta , 1947 .

[97]  R. Hassler Comparative Anatomy of the Central Visual Systems in Day- and Night-active Primates , 1966 .

[98]  H. Tamura,et al.  Mechanisms underlying orientation selectivity of neurons in the primary visual cortex of the macaque. , 1996, The Journal of physiology.

[99]  K. Rockland,et al.  Bistratified distribution of terminal arbors of individual axons projecting from area V1 to middle temporal area (MT) in the macaque monkey , 1989, Visual Neuroscience.

[100]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.