On the rate of convergence of the Gaver-Stehfest algorithm

The Gaver-Stehfest algorithm is widely used for numerical inversion of Laplace transform. In this paper we provide the first rigorous study of the rate of convergence of the Gaver-Stehfest algorithm. We prove that Gaver-Stehfest approximations converge exponentially fast if the target function is analytic in a neighbourhood of a point and they converge at a rate $o(n^{-k})$ if the target function is $(2k+3)$-times differentiable at a point.

[1]  StehfestHarald Remark on algorithm 368: Numerical inversion of Laplace transforms , 1970 .

[2]  B. Davies,et al.  Numerical Inversion of the Laplace Transform: A Survey and Comparison of Methods , 1979 .

[3]  Ward Whitt,et al.  A Unified Framework for Numerically Inverting Laplace Transforms , 2006, INFORMS J. Comput..

[4]  Guy Latouche,et al.  Risk processes analyzed as fluid queues , 2005 .

[5]  Avraham Adler,et al.  Lambert-W Function , 2015 .

[6]  Peter P. Valko,et al.  Comparison of sequence accelerators forthe Gaver method of numerical Laplace transform inversion , 2004 .

[7]  Variance‐Gamma Model , 2010 .

[8]  Jef L. Teugels,et al.  Numerical accuracy of real inversion formulas for the Laplace transform , 2010, J. Comput. Appl. Math..

[9]  C. N. Rhodine,et al.  The Gaver-Stehfest algorithm for approximate inversion of Laplace transforms , 1983, IEEE Circuits & Systems Magazine.

[10]  John Knight,et al.  Transient electromagnetic calculations using the Gaver-Stehfest inverse Laplace transform method , 1982 .

[11]  Ward Whitt,et al.  The Fourier-series method for inverting transforms of probability distributions , 1992, Queueing Syst. Theory Appl..

[12]  C. Montella LSV modelling of electrochemical systems through numerical inversion of Laplace transforms. I – The GS–LSV algorithm , 2008 .

[13]  H. Kawakatsu Numerical Inversion Methods for Computing Approximate p-Values , 2005 .

[14]  Alexey Kuznetsov,et al.  On the Convergence of the Gaver-Stehfest Algorithm , 2013, SIAM J. Numer. Anal..

[15]  Inequalities of Some Trigonometric Functions , 2004 .

[16]  D. P. Gaver,et al.  Observing Stochastic Processes, and Approximate Transform Inversion , 1966, Oper. Res..

[17]  Hui Wang,et al.  First passage times of a jump diffusion process , 2003, Advances in Applied Probability.