State estimation and decoupling of unknown inputs in uncertain LPV systems using interval observers

ABSTRACT This paper proposes a linear parameter varying (LPV) interval observer for state estimation and unknown inputs decoupling in uncertain continuous-time LPV systems. Two different problems are considered and solved: (1) the evaluation of the set of admissible values for the state at each instant of time; and (2) the unknown input observation, i.e. the design of the observer in such a way that some information about the nature of the unknown inputs affecting the system can be obtained. In both cases, analysis and design conditions, which rely on solving linear matrix inequalities (LMIs), are provided. The effectiveness and appeal of the proposed method is demonstrated using an illustrative application to a two-joint planar robotic manipulator.

[1]  Steven X. Ding,et al.  A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches , 2015, IEEE Transactions on Industrial Electronics.

[2]  Hassan Hammouri,et al.  Unknown input observer for state affine systems: A necessary and sufficient condition , 2010, Autom..

[3]  M. Morari,et al.  Optimal control of piecewise affine systems: A dynamic programming approach , 2005 .

[4]  Tor Arne Johansen,et al.  Fault tolerant control allocation using unknown input observers , 2014, Autom..

[5]  J. Gouzé,et al.  Interval observers for uncertain biological systems , 2000 .

[6]  Jeff S. Shamma,et al.  An Overview of LPV Systems , 2012 .

[7]  Jie Chen,et al.  Design of unknown input observers and robust fault detection filters , 1996 .

[8]  Ali Zolghadri,et al.  Interval observer design for consistency checks of nonlinear continuous-time systems , 2010, Autom..

[9]  Steven X. Ding,et al.  H_/H∞ fault detection filter design for discrete-time Takagi-Sugeno fuzzy system , 2013, Autom..

[10]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[11]  Steven X. Ding,et al.  Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools , 2008 .

[12]  H. Nijmeijer,et al.  New directions in nonlinear observer design , 1999 .

[13]  Yan Wang,et al.  Interval observer design for LPV systems with parametric uncertainty , 2015, Autom..

[14]  Olivier Bernard,et al.  Near optimal interval observers bundle for uncertain bioreactors , 2007, 2007 European Control Conference (ECC).

[15]  Marcin Witczak,et al.  Design of an extended unknown input observer with stochastic robustness techniques and evolutionary algorithms , 2007, Int. J. Control.

[16]  R. W. Wilde,et al.  Observers for linear systems with unknown inputs , 1988 .

[17]  Gildas Besancon,et al.  Nonlinear observers and applications , 2007 .

[18]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[19]  Silvio Simani,et al.  Model-Based Fault Diagnosis Techniques , 2003 .

[20]  Denis Efimov,et al.  H ∞  ∕ H −  LPV solutions for fault detection of aircraft actuator faults: Bridging the gap between theory and practice , 2015 .

[21]  Luc Jaulin,et al.  Nonlinear bounded-error state estimation of continuous-time systems , 2002, Autom..

[22]  H. Werner,et al.  Automated Generation and Assessment of Affine LPV Models , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[23]  Janos Gertler,et al.  Fault detection and diagnosis in engineering systems , 1998 .

[24]  Denis V. Efimov,et al.  Estimation and control of discrete-time LPV systems using interval observers , 2013, 52nd IEEE Conference on Decision and Control.

[25]  Christophe Combastel,et al.  Fault detection based on robust adaptive thresholds: A dynamic interval approach , 2013, Annu. Rev. Control..

[26]  H. Hammouri,et al.  Observer-based fault diagnosis for a class of non-linear systems Application to a free radical copolymerization reaction , 2000 .

[27]  Michael Athans,et al.  Guaranteed properties of gain scheduled control for linear parameter-varying plants , 1991, Autom..

[28]  Alessandro Astolfi,et al.  High gain observers with updated gain and homogeneous correction terms , 2009, Autom..

[29]  Marcin Witczak,et al.  Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems , 2014 .

[30]  Eric Walter,et al.  Guaranteed Nonlinear State Estimator for Cooperative Systems , 2004, Numerical Algorithms.

[31]  Denis V. Efimov,et al.  On Interval Observer Design for a Class of Continuous-Time LPV Systems , 2013, NOLCOS.

[32]  Denis V. Efimov,et al.  Interval State Estimation for a Class of Nonlinear Systems , 2012, IEEE Transactions on Automatic Control.

[33]  Jean-Luc Gouzé,et al.  Closed loop observers bundle for uncertain biotechnological models , 2004 .

[34]  D. Henry,et al.  Design and analysis of robust residual generators for systems under feedback control , 2005, Autom..

[35]  Peng-Yung Woo,et al.  Gain Scheduled LPV H∞ Control Based on LMI Approach for a Robotic Manipulator , 2002, J. Field Robotics.

[36]  Massimiliano Mattei,et al.  A direct/functional redundancy scheme for fault detection and isolation on an aircraft , 2006 .

[37]  Jie Chen,et al.  Robust Model-Based Fault Diagnosis for Dynamic Systems , 1998, The International Series on Asian Studies in Computer and Information Science.

[38]  Lorenzo Marconi,et al.  Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems , 2005 .

[39]  S. Rinaldi,et al.  Positive Linear Systems: Theory and Applications , 2000 .

[40]  Christian Hoffmann,et al.  A Survey of Linear Parameter-Varying Control Applications Validated by Experiments or High-Fidelity Simulations , 2015, IEEE Transactions on Control Systems Technology.

[41]  D. Luenberger Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.

[42]  John B. Moore,et al.  Optimal State Estimation , 2006 .

[43]  Hong Wang,et al.  Design of fault diagnosis filters and fault-tolerant control for a class of nonlinear systems , 2001, IEEE Trans. Autom. Control..

[44]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[45]  Robert F. Stengel,et al.  Robust control system design using random search and genetic algorithms , 1997, IEEE Trans. Autom. Control..

[46]  Paul M. Frank,et al.  Model-Based Fault Diagnosis , 1992, Concise Encyclopedia of Modelling & Simulation.