Electronic transport mechanisms in scaled gate-all-around silicon nanowire transistor arrays

Low-frequency noise is used to study the electronic transport in arrays of 14 nm gate length vertical silicon nanowire devices. We demonstrate that, even at such scaling, the electrostatic control of the gate-all-around is sufficient in the sub-threshold voltage region to confine charges in the heart of the wire, and the extremely low noise level is comparable to that of high quality epitaxial layers. Although contact noise can already be a source of poor transistor operation above threshold voltage for few nanowires, nanowire parallelization drastically reduces its impact.

[1]  L.-E. Wernersson,et al.  Vertical Enhancement-Mode InAs Nanowire Field-Effect Transistor With 50-nm Wrap Gate , 2008, IEEE Electron Device Letters.

[2]  M. Rosmeulen,et al.  Experimental evidence of short-channel electron mobility degradation caused by interface charges located at the gate-edge of triple-gate FinFETs , 2006, 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings.

[3]  E. Dubois,et al.  Low-Frequency Noise in Schottky-Barrier-Based Nanoscale Field-Effect Transistors , 2012, IEEE Transactions on Electron Devices.

[4]  T. Fukui,et al.  A III–V nanowire channel on silicon for high-performance vertical transistors , 2012, Nature.

[5]  Chi-Woo Lee,et al.  Nanowire transistors without junctions. , 2010, Nature nanotechnology.

[6]  Water electrolysis and energy harvesting with zero-dimensional ion-sensitive field-effect transistors. , 2013, Nano letters.

[7]  Gerard Ghibaudo,et al.  On the theory of carrier number fluctuations in MOS devices , 1989 .

[8]  S. Datta,et al.  Nanoscale Transistors—Just Around the Gate? , 2013, Science.

[9]  J. Dufrêche,et al.  A silicon nanowire ion-sensitive field-effect transistor with elementary charge sensitivity , 2010, 1010.1232.

[10]  J. Colinge,et al.  Random telegraph-signal noise in junctionless transistors , 2011 .

[11]  L.K.J. Vandamme,et al.  What Do We Certainly Know About $\hbox{1}/f$ Noise in MOSTs? , 2008, IEEE Transactions on Electron Devices.

[12]  1/f γ tunnel current noise through Si-bound alkyl monolayers , 2007, cond-mat/0701477.

[13]  A. Balandin,et al.  Low-frequency 1/f noise in graphene devices. , 2013, Nature nanotechnology.

[14]  D. Rigaud,et al.  1/f noise in MODFETs at low drain bias , 1990 .

[15]  E. Lind,et al.  Low-Frequency Noise in Vertical InAs Nanowire FETs , 2010, IEEE Electron Device Letters.

[16]  Ching-Te Chuang,et al.  Investigation of single-trap-induced random telegraph noise for tunnel FET based devices, 8T SRAM cell, and sense amplifiers , 2013, 2013 IEEE International Reliability Physics Symposium (IRPS).

[17]  J. Colinge,et al.  Field-effect mobility extraction in nanowire field-effect transistors by combination of transfer characteristics and random telegraph noise measurements , 2011 .

[18]  Yael Nemirovsky,et al.  1/f Noise in CMOS transistors for analog applications from subthreshold to saturation , 1998 .

[19]  Wolfgang H. Krautschneider,et al.  Observation and modeling of random telegraph signals in the gate and drain currents of tunneling metal–oxide–semiconductor field-effect transistors , 2001 .

[20]  E. Dubois,et al.  Carrier injection at silicide/silicon interfaces in nanowire based-nanocontacts , 2012 .

[21]  G. Larrieu,et al.  Vertical nanowire array-based field effect transistors for ultimate scaling. , 2013, Nanoscale.

[22]  J. Tersoff,et al.  Low-frequency noise in nanoscale ballistic transistors. , 2007, Nano letters.

[23]  D. M. Kim,et al.  Characterization of Channel-Diameter-Dependent Low-Frequency Noise in Silicon Nanowire Field-Effect Transistors , 2012, IEEE Electron Device Letters.

[24]  H. Mera,et al.  Impurity-limited mobility and variability in gate-all-around silicon nanowires , 2012 .

[25]  M. Mouis,et al.  Three-Dimensional Real-Space Simulation of Surface Roughness in Silicon Nanowire FETs , 2009, IEEE Transactions on Electron Devices.

[26]  N Clément,et al.  One-by-one trap activation in silicon nanowire transistors. , 2010, Nature communications.

[27]  F. Xia,et al.  Quantum behavior of graphene transistors near the scaling limit. , 2012, Nano letters.

[28]  G. Ghibaudo,et al.  Unexpected mobility degradation for very short devices : A new challenge for CMOS scaling , 2006, 2006 International Electron Devices Meeting.

[29]  S. Machlup,et al.  Noise in Semiconductors: Spectrum of a Two‐Parameter Random Signal , 1954 .

[30]  Dapeng Yu,et al.  Sub-10 nm Gate Length Graphene Transistors: Operating at Terahertz Frequencies with Current Saturation , 2013, Scientific Reports.

[31]  M. J. Kirton,et al.  Noise in solid-state microstructures: A new perspective on individual defects, interface states and low-frequency (1/ƒ) noise , 1989 .

[32]  Walter Riess,et al.  Realization of a silicon nanowire vertical surround-gate field-effect transistor. , 2006, Small.

[33]  Mark S. Lundstrom,et al.  Sub-10 nm carbon nanotube transistor , 2011, 2011 International Electron Devices Meeting.

[34]  K. Kakushima,et al.  Fundamental origin of excellent low-noise property in 3D Si-MOSFETs ∼ Impact of charge-centroid in the channel due to quantum effect on 1/f noise ∼ , 2011, 2011 International Electron Devices Meeting.

[35]  D. A. Antoniadis,et al.  Room-temperature carrier transport in high-performance short-channel Silicon nanowire MOSFETs , 2012, 2012 International Electron Devices Meeting.

[36]  F. Hooge 1/ƒ noise is no surface effect , 1969 .

[37]  O. Gluschenkov,et al.  Performance dependence of CMOS on silicon substrate orientation for ultrathin oxynitride and HfO2 gate dielectrics , 2003, IEEE Electron Device Letters.

[38]  P. D. Ye,et al.  First experimental demonstration of gate-all-around III–V MOSFETs by top-down approach , 2011, 2011 International Electron Devices Meeting.