Multivariate patchwork copulas: A unified approach with applications to partial comonotonicity
暂无分享,去创建一个
[1] Fabrizio Durante,et al. Invariant dependence structure under univariate truncation , 2012 .
[2] S. Satchell,et al. THE BERNSTEIN COPULA AND ITS APPLICATIONS TO MODELING AND APPROXIMATIONS OF MULTIVARIATE DISTRIBUTIONS , 2004, Econometric Theory.
[3] José M. González-Barrios,et al. Construction of multivariate copulas in $n$-boxes , 2013, Kybernetika.
[4] A multivariate piecing-together approach with an application to operational loss data , 2012, 1205.1617.
[5] Extensions of the notion of overall comonotonicity to partial comonotonicity , 2013 .
[6] Claudia Czado,et al. Statistical Assessments of Systemic Risk Measures , 2012 .
[7] Fabrizio Durante,et al. Shuffles of copulas , 2009 .
[8] Bernard De Baets,et al. Orthogonal Grid Constructions of Copulas , 2007, IEEE Transactions on Fuzzy Systems.
[9] M. J. Frank,et al. Associative Functions: Triangular Norms And Copulas , 2006 .
[10] Radko Mesiar,et al. Copulas Constructed from Horizontal Sections , 2007 .
[11] M. D. Taylor,et al. A New Proof of Sklar’s Theorem , 2002 .
[12] Martin Hofmann,et al. The multivariate Piecing-Together approach revisited , 2012, J. Multivar. Anal..
[13] Ming-Heng Zhang,et al. Modelling total tail dependence along diagonals , 2008 .
[14] Juan Fernández-Sánchez,et al. A topological proof of Sklar's theorem , 2013, Appl. Math. Lett..
[15] Piotr Jaworski. On Copulas and Differential Inclusions , 2012, SMPS.
[16] Multivariate shuffles and approximation of copulas , 2010 .
[17] Juan Fernández-Sánchez,et al. Sklar’s theorem obtained via regularization techniques , 2012 .
[18] Yarema Okhrin,et al. On the structure and estimation of hierarchical Archimedean copulas , 2013 .
[19] Jianhua Z. Huang,et al. Approximation of bivariate copulas by patched bivariate Fréchet copulas , 2011 .
[20] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[21] Paul Embrechts,et al. Bounds for Functions of Dependent Risks , 2006, Finance Stochastics.
[22] Fabrizio Durante,et al. Rectangular Patchwork for Bivariate Copulas and Tail Dependence , 2009 .
[23] Fabrizio Durante,et al. On the approximation of copulas via shuffles of Min , 2012 .
[24] An extension of the Koziol–Green model under dependent censoring , 2011 .
[25] Paul Embrechts,et al. Worst VaR scenarios , 2005 .
[26] Martin Eling,et al. Dependence modeling in non-life insurance using the Bernstein copula , 2012 .
[27] C. Sempi,et al. Copula Theory: An Introduction , 2010 .
[28] Radko Mesiar,et al. Ordinal sums and idempotents of copulas , 2010 .
[29] Juan Fernández-Sánchez,et al. Characterization of all copulas associated with non-continuous random variables , 2012, Fuzzy Sets Syst..
[30] Fabrizio Durante,et al. Multivariate Hierarchical Copulas with Shocks , 2010 .
[31] Ambrose Lo,et al. Characterizations of counter-monotonicity and upper comonotonicity by (tail) convex order , 2013 .
[32] Piotr Jaworski,et al. On distributions of order statistics for absolutely continuous copulas with applications to reliability , 2008, Kybernetika.
[33] R. Braekers,et al. Testing Under the Extended Koziol-Green Model , 2010 .
[34] Radko Mesiar,et al. Copulas with given values on a horizontal and a vertical section , 2007, Kybernetika.
[35] Aristidis K. Nikoloulopoulos,et al. Vine copulas with asymmetric tail dependence and applications to financial return data , 2012, Comput. Stat. Data Anal..
[36] Radko Mesiar,et al. Univariate conditioning of copulas , 2008, Kybernetika.
[37] P. Embrechts,et al. Model Uncertainty and VaR Aggregation , 2013 .
[38] H. Joe,et al. Tail comonotonicity: Properties, constructions, and asymptotic additivity of risk measures , 2012 .