Error-corrected quantum sensing

Quantum metrology has many important applications in science and technology, ranging from frequency spectroscopy to gravitational wave detection. Quantum mechanics imposes a fundamental limit on measurement precision, called the Heisenberg limit, which can be achieved for noiseless quantum systems, but is not achievable in general for systems subject to noise. Here we study how measurement precision can be enhanced through quantum error correction, a general method for protecting a quantum system from the damaging effects of noise. We find a necessary and sufficient condition for achieving the Heisenberg limit using quantum probes subject to Markovian noise, assuming that noiseless ancilla systems are available, and that fast, accurate quantum processing can be performed. When the sufficient condition is satisfied, the quantum error-correcting code achieving the best possible precision can be found by solving a semidefinite program. We also show that noiseless ancilla are not needed when the signal Hamiltonian and the error operators commute. Finally we provide two explicit, archetypal examples of quantum sensors: qubits undergoing dephasing and a lossy bosonic mode.

[1]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[2]  Holland,et al.  Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.

[3]  A Retzker,et al.  Increasing sensing resolution with error correction. , 2013, Physical review letters.

[4]  M. Lukin,et al.  Quantum error correction for metrology. , 2013, Physical review letters.

[5]  Sixia Yu,et al.  Robust quantum metrological schemes based on protection of quantum Fisher information , 2014, Nature Communications.

[6]  Debbie W. Leung,et al.  Bosonic quantum codes for amplitude damping , 1997 .

[7]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[8]  M. Rossi,et al.  Restoring Heisenberg scaling in noisy quantum metrology by monitoring the environment , 2018, Quantum Information and Measurement (QIM) V: Quantum Technologies.

[9]  R. Ozeri Heisenberg limited metrology using Quantum Error-Correction Codes , 2013, 1310.3432.

[10]  J. Mason,et al.  Integration Using Chebyshev Polynomials , 2003 .

[11]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[12]  D. Leibfried,et al.  Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States , 2004, Science.

[13]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[14]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[15]  Francesco Albarelli,et al.  Ultimate limits for quantum magnetometry via time-continuous measurements , 2017, 1706.00485.

[16]  B. Kraus,et al.  Improved Quantum Metrology Using Quantum Error Correction , 2013, 1310.3750.

[17]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[18]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[19]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[20]  Pavel Sekatski,et al.  Quantum metrology with full and fast quantum control , 2016, 1603.08944.

[21]  Andrea Smirne,et al.  Ultimate Precision Limits for Noisy Frequency Estimation. , 2015, Physical review letters.

[22]  S. Bartlett,et al.  Quantum methods for clock synchronization: Beating the standard quantum limit without entanglement , 2005, quant-ph/0505112.

[23]  Michael J. Biercuk,et al.  Optimized dynamical decoupling in a model quantum memory , 2008, Nature.

[24]  Amir Yacoby,et al.  Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs , 2011 .

[25]  Todd A. Brun,et al.  Quantum Error Correction , 2019, Oxford Research Encyclopedia of Physics.

[26]  Dorit Aharonov,et al.  Quantum Error-Correction-Enhanced Magnetometer Overcoming the Limit Imposed by Relaxation. , 2015, Physical review letters.

[27]  M. Markham,et al.  Quantum Metrology Enhanced by Repetitive Quantum Error Correction. , 2016, Physical review letters.

[28]  Andrea Morello,et al.  Electron spin decoherence in isotope-enriched silicon. , 2010, Physical review letters.

[29]  Kirk McKenzie,et al.  Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection. , 2002, Physical review letters.

[30]  Paola Cappellaro,et al.  Ancilla-Free Quantum Error Correction Codes for Quantum Metrology. , 2018, Physical review letters.

[31]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[32]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[33]  M. B. Plenio,et al.  Sensing in the presence of an observed environment , 2016 .

[34]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[35]  Simon Benjamin,et al.  Magnetic field sensing with quantum error detection under the effect of energy relaxation , 2016, 1611.10264.

[36]  Jan Kolodynski,et al.  Efficient tools for quantum metrology with uncorrelated noise , 2013, 1303.7271.

[37]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[38]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[39]  J. Czajkowski,et al.  Adaptive quantum metrology under general Markovian noise , 2017, 1704.06280.

[40]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[41]  Cédric Bény Perturbative quantum error correction. , 2011, Physical review letters.

[42]  Jae-Mo Lihm,et al.  Implementation-independent sufficient condition of the Knill-Laflamme type for the autonomous protection of logical qudits by strong engineered dissipation , 2017, Physical Review A.

[43]  A Acín,et al.  Noisy metrology beyond the standard quantum limit. , 2012, Physical review letters.

[44]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[45]  Jan Kolodynski,et al.  Precision bounds in noisy quantum metrology , 2014, 1409.0535.

[46]  J. P. Dehollain,et al.  Storing quantum information for 30 seconds in a nanoelectronic device. , 2014, Nature nanotechnology.

[47]  Haidong Yuan Sequential Feedback Scheme Outperforms the Parallel Scheme for Hamiltonian Parameter Estimation. , 2016, Physical review letters.

[48]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[49]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[50]  Liang Jiang,et al.  A CNOT gate between multiphoton qubits encoded in two cavities , 2017, Nature Communications.

[51]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[52]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[53]  Hiroshi Imai,et al.  A fibre bundle over manifolds of quantum channels and its application to quantum statistics , 2008 .

[54]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[55]  Animesh Datta,et al.  Fault-tolerant quantum metrology , 2018, Physical Review A.

[56]  J. Preskill,et al.  Achieving the Heisenberg limit in quantum metrology using quantum error correction , 2017, Nature Communications.

[57]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[58]  F. R. Ong,et al.  Flux qubits in a planar circuit quantum electrodynamics architecture: Quantum control and decoherence , 2014, 1407.1346.

[59]  Jonathan P. Dowling,et al.  A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.

[60]  Moore,et al.  Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[61]  Joseph Fitzsimons,et al.  Magnetic field sensing beyond the standard quantum limit under the effect of decoherence , 2011, 1101.2561.

[62]  P. Zoller,et al.  Dissipative quantum error correction and application to quantum sensing with trapped ions , 2017, Nature Communications.

[63]  Paola Cappellaro,et al.  Spatial noise filtering through error correction for quantum sensing , 2017, npj Quantum Information.

[64]  Giuliano Scarcelli,et al.  Distant Clock Synchronization Using Entangled Photon Pairs , 2004 .

[65]  C. Helstrom Quantum detection and estimation theory , 1969 .

[66]  G. Uhrig Keeping a quantum bit alive by optimized pi-pulse sequences. , 2006, Physical review letters.

[67]  K. Banaszek,et al.  Quantum phase estimation with lossy interferometers , 2009, 0904.0456.

[68]  Liang Jiang,et al.  Implementing a universal gate set on a logical qubit encoded in an oscillator , 2016, Nature Communications.

[69]  Lorenzo Maccone,et al.  Using entanglement against noise in quantum metrology. , 2014, Physical review letters.

[70]  Alex W Chin,et al.  Quantum metrology in non-Markovian environments. , 2011, Physical review letters.

[71]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.