Visual Analysis of Multi-Run Spatio-Temporal Simulations Using Isocontour Similarity for Projected Views

Multi-run simulations are widely used to investigate how simulated processes evolve depending on varying initial conditions. Frequently, such simulations model the change of spatial phenomena over time. Isocontours have proven to be effective for the visual representation and analysis of 2D and 3D spatial scalar fields. We propose a novel visualization approach for multi-run simulation data based on isocontours. By introducing a distance function for isocontours, we generate a distance matrix used for a multidimensional scaling projection. Multiple simulation runs are represented by polylines in the projected view displaying change over time. We propose a fast calculation of isocontour differences based on a quasi-Monte Carlo approach. For interactive visual analysis, we support filtering and selection mechanisms on the multi-run plot and on linked views to physical space visualizations. Our approach can be effectively used for the visual representation of ensembles, for pattern and outlier detection, for the investigation of the influence of simulation parameters, and for a detailed analysis of the features detected. The proposed method is applicable to data of any spatial dimensionality and any spatial representation (gridded or unstructured). We validate our approach by performing a user study on synthetic data and applying it to different types of multi-run spatio-temporal simulation data.

[1]  Heeyoul Choi,et al.  Robust kernel Isomap , 2007, Pattern Recognit..

[2]  Hans-Christian Hege,et al.  Probabilistic Marching Cubes , 2011, Comput. Graph. Forum.

[3]  Raghu Machiraju,et al.  Salient iso-surface detection with model-independent statistical signatures , 2001, Proceedings Visualization, 2001. VIS '01..

[4]  Xiaoyu Zhang Complementary Shape Comparison with Additional Properties , 2006, VG@SIGGRAPH.

[5]  Rephael Wenger,et al.  On the Fractal Dimension of Isosurfaces , 2010, IEEE Transactions on Visualization and Computer Graphics.

[6]  Hamish A. Carr,et al.  On Histograms and Isosurface Statistics , 2006, IEEE Transactions on Visualization and Computer Graphics.

[7]  Hiroshi Akibay,et al.  A tri-space visualization interface for analyzing time-varying multivariate volume data , 2007 .

[8]  Kresimir Matkovic,et al.  Interactive visual analysis of families of curves using data aggregation and derivation , 2012, i-KNOW '12.

[9]  Peter Filzmoser,et al.  Uncertainty‐Aware Exploration of Continuous Parameter Spaces Using Multivariate Prediction , 2011, Comput. Graph. Forum.

[10]  Kwan-Liu Ma,et al.  A Tri-Space Visualization Interface for Analyzing Time-Varying Multivariate Volume Data , 2007, EuroVis.

[11]  Andrew Vande Moere,et al.  Time-Varying Data Visualization Using Information Flocking Boids , 2004, IEEE Symposium on Information Visualization.

[12]  Andrew T. Wilson,et al.  Visualization of uncertainty and ensemble data: Exploration of climate modeling and weather forecast data with integrated ViSUS-CDAT systems , 2009 .

[13]  Christopher G. Healey,et al.  Exploring ensemble visualization , 2012, Visualization and Data Analysis.

[14]  Torsten Möller,et al.  Integrating Isosurface Statistics and Histograms , 2013, IEEE Transactions on Visualization and Computer Graphics.

[15]  R. Caflisch,et al.  Quasi-Monte Carlo integration , 1995 .

[16]  Valerio Pascucci,et al.  The contour spectrum , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[17]  Andrew Mercer,et al.  Noodles: A Tool for Visualization of Numerical Weather Model Ensemble Uncertainty , 2010, IEEE Transactions on Visualization and Computer Graphics.

[18]  Helwig Hauser,et al.  Visualization and Visual Analysis of Multifaceted Scientific Data: A Survey , 2013, IEEE Transactions on Visualization and Computer Graphics.

[19]  Lars Linsen,et al.  Splat-based Ray Tracing of Point Clouds , 2007, J. WSCG.

[20]  Valerio Pascucci,et al.  Ensemble-Vis: A Framework for the Statistical Visualization of Ensemble Data , 2009, 2009 IEEE International Conference on Data Mining Workshops.

[21]  Deborah F. Swayne,et al.  Data Visualization With Multidimensional Scaling , 2008 .

[22]  Cláudio T. Silva,et al.  Revisiting Histograms and Isosurface Statistics , 2008, IEEE Transactions on Visualization and Computer Graphics.

[23]  Charl P. Botha,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2010 Dynamic Multi-view Exploration of Shape Spaces , 2022 .

[24]  M. Levandowsky,et al.  Distance between Sets , 1971, Nature.

[25]  Stefan Bruckner,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2010 Isosurface Similarity Maps , 2022 .

[26]  Lars Linsen,et al.  Direct Isosurface Extraction from Scattered Volume Data , 2006, EuroVis.

[27]  Han-Wei Shen,et al.  Visualization and Exploration of Temporal Trend Relationships in Multivariate Time-Varying Data , 2009, IEEE Transactions on Visualization and Computer Graphics.

[28]  Han-Wei Shen,et al.  Multi-variate, Time Varying, and Comparative Visualization with Contextual Cues , 2006, IEEE Transactions on Visualization and Computer Graphics.

[29]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.