Comparing Canonical Correlation Analysis with Partial Least Squares Regression in Estimating Forest Leaf Area Index with Multitemporal Landsat TM Imagery

The leaf area index (LAI) of plant canopies is an important structural variable for assessing terrestrial ecosystems. This research examined the use of multitemporal Landsat TM imagery to estimate and map LAI in mixed natural forests in the southeastern USA. The performances of canonical correlation analysis (CCA) and partial least squares (PLS) regression techniques were evaluated for feature extraction to estimate forest LAI. The experimental results indicate that use of multitemporal TM imagery can improve the accuracy of estimating the forest LAI, and that CCA analysis outperforms PLS regression for feature extraction.

[1]  J. Ardö,et al.  Investigating the use of Landsat thematic mapper data for estimation of forest leaf area index in southern Sweden , 2003 .

[2]  A. C. Xavier,et al.  Mapping leaf area index through spectral vegetation indices in a subtropical watershed , 2004 .

[3]  S. Running,et al.  Mapping Regional Forest Evapotranspiration And Photosynthesis By Coupling Satellite Data With Ecosystem Simulation , 1989, 10th Annual International Symposium on Geoscience and Remote Sensing.

[4]  Sheng Chen,et al.  Sparse modeling using orthogonal forward regression with PRESS statistic and regularization , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[5]  C. O'Connor An introduction to multivariate statistical analysis: 2nd edn. by T. W. Anderson. 675 pp. Wiley, New York (1984) , 1987 .

[6]  W. Cooley,et al.  Multivariate Data Analysis , 1972 .

[7]  S. Leblanc,et al.  A Shortwave Infrared Modification to the Simple Ratio for LAI Retrieval in Boreal Forests: An Image and Model Analysis , 2000 .

[8]  Roberta E. Martin,et al.  Spectral and chemical analysis of tropical forests: Scaling from leaf to canopy levels , 2008 .

[9]  Philip J. Howarth,et al.  Hyperspectral remote sensing for estimating biophysical parameters of forest ecosystems , 1999 .

[10]  P. Gong,et al.  Comparative Analysis of EO-1 ALI and Hyperion, and Landsat ETM+ Data for Mapping Forest Crown Closure and Leaf Area Index , 2008, Sensors.

[11]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[12]  D. M. Gates,et al.  Spectral Properties of Plants , 1965 .

[13]  H. L. Allen,et al.  Using multispectral satellite imagery to estimate leaf area and response to silvicultural treatments in loblolly pine stands , 2006 .

[14]  Nadine Gobron,et al.  Theoretical limits to the estimation of the leaf area index on the basis of visible and near-infrared remote sensing data , 1997, IEEE Trans. Geosci. Remote. Sens..

[15]  J. Chen Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications , 1996 .

[16]  Ruiliang Pu,et al.  Coniferous forest leaf area index estimation along the Oregon transect using compact airborne spectrographic imager data , 1995 .

[17]  Andrew K. Skidmore,et al.  Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression , 2007, Int. J. Appl. Earth Obs. Geoinformation.

[18]  B. Turner,et al.  Estimating foliage nitrogen concentration from HYMAP data using continuum, removal analysis , 2004 .

[19]  Mark E. Jakubauskas,et al.  Canonical correlation analysis of coniferous forest spectral and biotic relations , 1996 .

[20]  F. Baret,et al.  A ratio vegetation index adjusted for soil brightness , 1990 .

[21]  R. Pu,et al.  EO‐1 Hyperion, ALI and Landsat 7 ETM+ data comparison for estimating forest crown closure and leaf area index , 2005 .

[22]  J. Irons,et al.  Requirements for a Landsat Data Continuity Mission , 2006 .

[23]  J. Chen,et al.  Retrieving Leaf Area Index of Boreal Conifer Forests Using Landsat TM Images , 1996 .

[24]  S. Leblanc,et al.  Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements , 2002 .

[25]  M. Schlerf,et al.  Remote sensing of forest biophysical variables using HyMap imaging spectrometer data , 2005 .

[26]  R. Pu,et al.  Segmented canonical discriminant analysis of in situ hyperspectral data for identifying 13 urban tree species , 2011 .

[27]  D. Peddle Spectral Mixture Analysis and Geometric-Optical Reflectance Modeling of Boreal Forest Biophysical Structure , 1999 .

[28]  Kenshi Sakai,et al.  Prediction of citrus yield from airborne hyperspectral imagery , 2007, Precision Agriculture.

[29]  A. J. Richardsons,et al.  DISTINGUISHING VEGETATION FROM SOIL BACKGROUND INFORMATION , 1977 .

[30]  P. M. Hansena,et al.  Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression , 2003 .

[31]  Didier Tanré,et al.  Atmospherically resistant vegetation index (ARVI) for EOS-MODIS , 1992, IEEE Trans. Geosci. Remote. Sens..

[32]  L. Buydens,et al.  Exploring field vegetation reflectance as an indicator of soil contamination in river floodplains. , 2004, Environmental pollution.

[33]  F. Baret,et al.  TSAVI: A Vegetation Index Which Minimizes Soil Brightness Effects On LAI And APAR Estimation , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[34]  P. Curran Remote sensing of foliar chemistry , 1989 .

[35]  T. W. Anderson An Introduction to Multivariate Statistical Analysis, 2nd Edition. , 1985 .

[36]  R. Wynne,et al.  Examining pine spectral separability using hyperspectral data from an airborne sensor: An extension of field‐based results , 2007 .

[37]  Tijiu Cai,et al.  Comparison of Ridge Regression and Partial Least Squares Regression for Estimating Above-Ground Biomass with Landsat Images and Terrain Data in Mu Us Sandy Land, China , 2009 .

[38]  Karin S. Fassnacht,et al.  Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites , 1999 .

[39]  F. Veroustraete,et al.  Investigating the relationship between ground‐measured LAI and vegetation indices in an alpine meadow, north‐west China , 2005 .

[40]  Ruiliang Pu,et al.  Mapping leaf area index over a mixed natural forest area in the flooding season using ground-based measurements and Landsat TM imagery , 2012 .

[41]  Clement Atzberger,et al.  LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements , 2008 .

[42]  Michael W. Binford,et al.  Measurement and comparison of Leaf Area Index estimators derived from satellite remote sensing techniques , 2004 .

[43]  T. M. Lillesand,et al.  Estimating the leaf area index of North Central Wisconsin forests using the landsat thematic mapper , 1997 .

[44]  Richard Fernandes,et al.  Evaluating image-based estimates of leaf area index in boreal conifer stands over a range of scales using high-resolution CASI imagery , 2004 .

[45]  Ruiliang Pu,et al.  Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data , 2003, IEEE Trans. Geosci. Remote. Sens..

[46]  D. Slaughter,et al.  A NIR Technique for Rapid Determination of Soil Mineral Nitrogen , 1999, Precision Agriculture.

[47]  K. Soudani,et al.  Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands , 2006 .

[48]  Miina Rautiainen,et al.  Boreal forest leaf area index from optical satellite images: model simulations and empirical analyses using data from central Finland , 2008 .

[49]  W. Cohen,et al.  An improved strategy for regression of biophysical variables and Landsat ETM+ data. , 2003 .

[50]  S. Running,et al.  Relationship of thematic mapper simulator data to leaf area index , 1987 .

[51]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[52]  Martin Kappas,et al.  Integration of Landsat ETM+ Data with Field Measurements for Mapping Leaf Area Index in the Grasslands of Central Kazakhstan , 2009 .

[53]  Ramakrishna R. Nemani,et al.  Measurement and remote sensing of LAI in Rocky Mountain montane ecosystems , 1997 .

[54]  Allan Aasbjerg Nielsen,et al.  Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data , 2002, IEEE Trans. Image Process..

[55]  Margaret Kalacska,et al.  Leaf area index measurements in a tropical moist forest: A case study from Costa Rica , 2004 .

[56]  Baoxin Hu,et al.  Retrieval of Leaf Area Index and Canopy Closure from CASI Data over the BOREAS Flux Tower Sites , 2000 .

[57]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[58]  N. Goel,et al.  Influences of canopy architecture on relationships between various vegetation indices and LAI and Fpar: A computer simulation , 1994 .

[59]  B. Kowalski,et al.  Partial least-squares regression: a tutorial , 1986 .

[60]  Anne Candace Schmidt,et al.  A Vascular Plant Inventory and Description of the Twelve Plant Community Types Found in the University of South Florida Ecological Research Area, Hillsborough County, Florida , 2005 .

[61]  H. Mooney,et al.  Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere , 1997, Science.

[62]  C. Jordan Derivation of leaf-area index from quality of light on the forest floor , 1969 .

[63]  A. Maclean,et al.  A comparison of canonical discriminant analysis and principal component analysis for spectral transformation. , 2000 .

[64]  F. Baret,et al.  Potentials and limits of vegetation indices for LAI and APAR assessment , 1991 .