Adaptive Pinning Control of Networks of Circuits and Systems in Lur'e Form

This paper is concerned with the derivation of a distributed adaptive control strategy for synchronization and consensus of networks of nonlinear systems in the Lur'e form. In particular, time-varying feedback coupling and control gains are considered, whose derivatives are functions of local error over each edge in the network. The strategy is shown to be successful in controlling the network to the desired trajectory. The stability analysis also encompasses the case of a generic inner coupling matrix, where the coupling may not involve all state variables. A set of simple sufficient conditions is derived that can also be used to design the inner coupling configuration. The theoretical derivation is complemented by its validation on a set of representative examples.

[1]  Guanrong Chen,et al.  Global synchronised regions of linearly coupled Lur'e systems , 2011, Int. J. Control.

[2]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[3]  F. Garofalo,et al.  Synchronization of complex networks through local adaptive coupling. , 2008, Chaos.

[4]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[5]  E. Bai,et al.  On the synchronization of a class of electronic circuits that exhibit chaos , 2002 .

[6]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[7]  L. Chua,et al.  The double hook (nonlinear chaotic circuits) , 1988 .

[8]  Alexander L. Fradkov,et al.  Adaptive synchronization of a network of interconnected nonlinear Lur’e systems , 2009 .

[9]  Adilson E. Motter,et al.  Maximum performance at minimum cost in network synchronization , 2006, cond-mat/0609622.

[10]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[11]  Zidong Wang,et al.  Synchronization and State Estimation for Discrete-Time Complex Networks With Distributed Delays , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[12]  Sonia Martínez,et al.  Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions , 2006, IEEE Transactions on Automatic Control.

[13]  Junan Lu,et al.  Pinning adaptive synchronization of a general complex dynamical network , 2008, Autom..

[14]  Tianping Chen,et al.  Pinning Complex Networks by a Single Controller , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[15]  Yılmaz Uyaroğlu,et al.  Synchronization and control of chaos in supply chain management , 2015, Comput. Ind. Eng..

[16]  Takashi Matsumoto,et al.  A chaotic attractor from Chua's circuit , 1984 .

[17]  Maurizio Porfiri,et al.  Criteria for global pinning-controllability of complex networks , 2008, Autom..

[18]  Johan A. K. Suykens,et al.  Master-Slave Synchronization of Lur'e Systems with Time-Delay , 2001, Int. J. Bifurc. Chaos.

[19]  Albert-László Barabási,et al.  Controllability of complex networks , 2011, Nature.

[20]  Leon O. Chua,et al.  Synchronization of Chua's circuits with time-varying channels and parameters , 1996 .

[21]  Jinde Cao,et al.  Adaptive Stabilization and Synchronization for Chaotic Lur'e Systems With Time-Varying Delay , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  Sheila Watson,et al.  The Double Hook , 1959 .

[23]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[24]  Lin Huang,et al.  Consensus of Multiagent Systems and Synchronization of Complex Networks: A Unified Viewpoint , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[25]  Mario di Bernardo,et al.  On QUAD, Lipschitz, and Contracting Vector Fields for Consensus and Synchronization of Networks , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[26]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[27]  Jinde Cao,et al.  Local Synchronization of a Complex Network Model , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[28]  R. Kálmán LYAPUNOV FUNCTIONS FOR THE PROBLEM OF LUR'E IN AUTOMATIC CONTROL. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Dimos V. Dimarogonas,et al.  On the Rendezvous Problem for Multiple Nonholonomic Agents , 2007, IEEE Transactions on Automatic Control.

[30]  W. Greub Linear Algebra , 1981 .

[31]  B. Bollobás The evolution of random graphs , 1984 .

[32]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[33]  Sabato Manfredi,et al.  Synchronization of Networks of Non-Identical Chua's Circuits: Analysis and Experiments , 2012, IEEE Trans. Circuits Syst. I Regul. Pap..

[34]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[35]  Frank Allgöwer,et al.  ROBUST CONTROL OF CONSTRAINED SECTOR BOUNDED LUR ’ E SYSTEMS WITH APPLICATIONS TO NONLINEAR MODEL PREDICTIVE CONTROL , 2010 .

[36]  Tianping Chen,et al.  Adaptive Synchronization of Coupled Chaotic Delayed Systems Based on Parameter Identification and its Applications , 2006, Int. J. Bifurc. Chaos.

[37]  Randal W. Beard,et al.  Distributed Consensus in Multi-vehicle Cooperative Control - Theory and Applications , 2007, Communications and Control Engineering.

[38]  J. Kurths,et al.  Synchronization in Oscillatory Networks , 2007 .

[39]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[40]  Mario di Bernardo,et al.  Novel decentralized adaptive strategies for the synchronization of complex networks , 2009, Autom..

[41]  Xiang Li,et al.  Pinning a complex dynamical network to its equilibrium , 2004, IEEE Trans. Circuits Syst. I Regul. Pap..

[42]  Tianping Chen,et al.  Robust synchronization of delayed neural networks based on adaptive control and parameters identification , 2006 .

[43]  Jin Zhou,et al.  Pinning Complex Delayed Dynamical Networks by a Single Impulsive Controller , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[44]  J. Suykens,et al.  Master-Slave Synchronization of Lur'e Systems , 1997 .

[45]  Wenwu Yu,et al.  On pinning synchronization of complex dynamical networks , 2009, Autom..

[46]  F. Garofalo,et al.  Pinning-controllability of complex networks , 2007, cond-mat/0701073.

[47]  Éva Gyurkovics,et al.  Application of a multiplier method to uncertain Lur'e-like systems , 2011, Syst. Control. Lett..

[48]  Eduardo D. Sontag,et al.  Synchronization of Interconnected Systems With Applications to Biochemical Networks: An Input-Output Approach , 2009, IEEE Transactions on Automatic Control.

[49]  Mario di Bernardo,et al.  Analysis and stability of consensus in networked control systems , 2010, Appl. Math. Comput..

[50]  Mario di Bernardo,et al.  Fully adaptive pinning control of complex networks , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[51]  P DeLellis,et al.  Synchronization and control of complex networks via contraction, adaptation and evolution , 2010, IEEE Circuits and Systems Magazine.

[52]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[53]  Wenwu Yu,et al.  Distributed Adaptive Control of Synchronization in Complex Networks , 2012, IEEE Transactions on Automatic Control.