Solving Satisfiability Via Boltzmann Machines

Boltzmann machines (BMs) are proposed as a computational model for the solution of the satisfiability (SAT) problem in the propositional calculus setting. Conditions that guarantee consensus function maxima for configurations of the BM associated with solutions to the satisfaction problem are given. Experimental results that show a linear behavior of BMs solving the satisfiability problem are presented and discussed. >

[1]  Allen Van Gelder,et al.  A Satisfiability Tester for Non-clausal Propositional Calculus , 1984, Inf. Comput..

[2]  Jean H. Gallier,et al.  Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae , 1984, J. Log. Program..

[3]  E. Aarts,et al.  Boltzmann machines for travelling salesman problems , 1989 .

[4]  Emile H. L. Aarts,et al.  Simulated annealing and Boltzmann machines - a stochastic approach to combinatorial optimization and neural computing , 1990, Wiley-Interscience series in discrete mathematics and optimization.

[5]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..

[6]  Emile H. L. Aarts,et al.  Boltzmann Machines and their Applications , 1987, PARLE.

[7]  Gadi Pinkas,et al.  Energy Minimization and the Satisfiability of Propositional Logic , 1991 .

[8]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[9]  Giorgio Gallo,et al.  Algorithms for Testing the Satisfiability of Propositional Formulae , 1989, J. Log. Program..

[10]  Nikitas A. Alexandridis,et al.  Picture decomposition, tree data-structures, and identifying directional symmetries as node combinations , 1978 .

[11]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[12]  T. Sejnowski Higher‐order Boltzmann machines , 1987 .

[13]  Emile H. L. Aarts,et al.  Computations in massively parallel networks based on the Boltzmann machine: a review , 1989, Parallel Comput..

[14]  Paul W. Purdom,et al.  Solving Satisfiability with Less Searching , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[16]  Karl J. Lieberherr Algorithmic Extremal Problems in Combinatorial Optimization , 1982, J. Algorithms.

[17]  Ehl Emile Aarts,et al.  The convergence of parallel Boltzmann machines , 1990 .

[18]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[19]  Ewald Speckenmeyer,et al.  Solving satisfiability in less than 2n steps , 1985, Discret. Appl. Math..

[20]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.