Revision Sequences and Computers with an Infinite Amount of Time
暂无分享,去创建一个
[1] Yiannis N. Moschovakis,et al. Elementary induction on abstract structures , 1974 .
[2] Jr. Hartley Rogers. Theory of Recursive Functions and Effective Computability , 1969 .
[3] Philip D. Welch,et al. The Length of Infinite Time Turing Machine Computations , 2000 .
[4] André Chapuis,et al. Alternative revision theories of truth , 1996, J. Philos. Log..
[5] H. Herzberger. Naive Semantics and the Liar Paradox , 1982 .
[6] Aladdin M. Yaqub,et al. The Liar Speaks the Truth: A Defense of the Revision Theory of Truth , 1993 .
[7] Saul A. Kripke,et al. Outline of a Theory of Truth , 1975 .
[8] Andrew Lewis,et al. Post's problem for supertasks has both positive and negative solutions , 2002, Arch. Math. Log..
[9] Philip Kremer,et al. The Gupta-Belnap systems S# and S* are not axiomatisable , 1993, Notre Dame J. Formal Log..
[10] A. Dawar. FINITE MODEL THEORY (Perspectives in Mathematical Logic) , 1997 .
[11] Hans G. Herzberger,et al. Notes on naive semantics , 1982, J. Philos. Log..
[12] Joel David Hamkins,et al. Infinite Time Turing Machines , 2000 .
[13] Anil Gupta,et al. Truth and paradox , 1982, J. Philos. Log..
[14] Jörg Flum,et al. Finite model theory , 1995, Perspectives in Mathematical Logic.
[15] Philip D. Welch,et al. Eventually infinite time Turing machine degrees: infinite time decidable reals , 2000, Journal of Symbolic Logic.
[16] N. Belnap,et al. The Revision Theory of Truth , 1993 .
[17] J. Earman,et al. Forever Is a Day: Supertasks in Pitowsky and Malament-Hogarth Spacetimes , 1993, Philosophy of Science.
[18] M. Hogarth. Does general relativity allow an observer to view an eternity in a finite time? , 1992 .
[19] Gian Aldo Antonelli,et al. The Complexity of Revision , 1994, Notre Dame J. Formal Log..
[20] Nuel Belnap,et al. Gupta's rule of revision theory of truth , 1982, J. Philos. Log..