Multivariate rational data fitting: general data structure, maximal accuracy and object orientation
暂无分享,去创建一个
[1] Willard L. Miranker,et al. Computer arithmetic in theory and practice , 1981, Computer science and applied mathematics.
[2] P. R. Graves-Morris,et al. Practical, Reliable, Rational Interpolation , 1980 .
[3] Claude Brezinski,et al. A general extrapolation algorithm , 1980 .
[4] Evaluation of Branched Continued Fractions using Block-Tridiagonal Linear Systems , 1988 .
[5] J urgen Wolff von Gudenberg. Object-oriented Concepts for Scientific Computation , 1991 .
[6] A. Cuyt. Extension of “a multivariate convergence theorem of the “de Montessus de Ballore” type” to multipoles , 1992 .
[7] Investigation of algorithms for numerical computation of continued fractions , 1976 .
[8] W. Miranker,et al. The arithmetic of the digital computer: A new approach , 1986 .
[9] Brigitte Verdonk,et al. Different Techniques for the Construction of Multivariate Rational Interpolants , 1988 .
[10] Brigitte Verdonk,et al. General order Newton-Padé approximants for multivariate functions , 1984 .
[11] Annie Cuyt. A recursive computation scheme for multivariate rational interpolants , 1987 .
[12] Herbert Arndt. Ein verallgemeinerter Kettenbruch-Algorithmus zur rationalen Hermite-Interpolation , 1980 .
[13] Accurate numerical algorithms: a collection of research papers , 1989 .