Detecting Fake News on Social Media

Abstract In the past decade, social media has become increasingly popular for news consumption due to its easy access, fast dissemination, and low cost. However, social media also enables the wide ...

[1]  Xing Zhou,et al.  Real-Time News Cer tification System on Sina Weibo , 2015, WWW.

[2]  Bo Zhao,et al.  A Survey on Truth Discovery , 2015, SKDD.

[3]  Miriam J. Metzger,et al.  The science of fake news , 2018, Science.

[4]  H. Russell Bernard,et al.  Studying Fake News via Network Analysis: Detection and Mitigation , 2018, Lecture Notes in Social Networks.

[5]  Oren Etzioni,et al.  Open Information Extraction from the Web , 2007, CACM.

[6]  Walter Quattrociocchi,et al.  Echo Chambers on Facebook , 2016 .

[7]  Yongdong Zhang,et al.  News Credibility Evaluation on Microblog with a Hierarchical Propagation Model , 2014, 2014 IEEE International Conference on Data Mining.

[8]  Sebastian Tschiatschek,et al.  Fake News Detection in Social Networks via Crowd Signals , 2017, WWW.

[9]  Ahmed K. Elmagarmid,et al.  TAILOR: a record linkage toolbox , 2002, Proceedings 18th International Conference on Data Engineering.

[10]  Robert M. Entman,et al.  Framing: Toward Clarification of a Fractured Paradigm , 1993 .

[11]  Yongdong Zhang,et al.  Novel Visual and Statistical Image Features for Microblogs News Verification , 2017, IEEE Transactions on Multimedia.

[12]  Praveen Paritosh,et al.  Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.

[13]  Jessica R. Collier,et al.  Priming and Fake News: The Effects of Elite Discourse on Evaluations of News Media , 2018, Mass Communication and Society.

[14]  Kai Shu,et al.  FakeNewsTracker: a tool for fake news collection, detection, and visualization , 2018, Computational and Mathematical Organization Theory.

[15]  Raymond J. Mooney,et al.  Adaptive duplicate detection using learnable string similarity measures , 2003, KDD '03.

[16]  Qiang Zhang,et al.  Reply-Aided Detection of Misinformation via Bayesian Deep Learning , 2019, WWW.

[17]  Ali A. Ghorbani,et al.  An overview of online fake news: Characterization, detection, and discussion , 2020, Inf. Process. Manag..

[18]  Yimin Chen,et al.  Deception detection for news: Three types of fakes , 2015, ASIST.

[19]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[20]  Stefan Stieglitz,et al.  Emotions and Information Diffusion in Social Media—Sentiment of Microblogs and Sharing Behavior , 2013, J. Manag. Inf. Syst..

[21]  B. Nyhan,et al.  When Corrections Fail: The Persistence of Political Misperceptions , 2010 .

[22]  Hermann Ney,et al.  Jointly optimising relevance and diversity in image retrieval , 2009, CIVR '09.

[23]  M. McPherson,et al.  Birds of a Feather: Homophily in Social Networks , 2001 .

[24]  Filippo Menczer,et al.  BotOrNot: A System to Evaluate Social Bots , 2016, WWW.

[25]  Xin Liu,et al.  Document clustering based on non-negative matrix factorization , 2003, SIGIR.

[26]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Huan Liu,et al.  dEFEND: Explainable Fake News Detection , 2019, KDD.

[28]  Ryan L. Boyd,et al.  The Development and Psychometric Properties of LIWC2015 , 2015 .

[29]  Kai Shu Beyond News Contents: The Role of Social Context for Fake News Detection , 2018 .

[30]  M. Gentzkow,et al.  Social Media and Fake News in the 2016 Election , 2017 .

[31]  Giovanni Luca Ciampaglia,et al.  The spread of low-credibility content by social bots , 2017, Nature Communications.

[32]  Erik Cambria,et al.  Recent Trends in Deep Learning Based Natural Language Processing , 2017, IEEE Comput. Intell. Mag..

[33]  Meital Balmas,et al.  When Fake News Becomes Real , 2014, Commun. Res..

[34]  Danai Koutra,et al.  Unifying Guilt-by-Association Approaches: Theorems and Fast Algorithms , 2011, ECML/PKDD.

[35]  Mohammad Ali Abbasi,et al.  Measuring User Credibility in Social Media , 2013, SBP.

[36]  Nayer M. Wanas,et al.  Web-based statistical fact checking of textual documents , 2010, SMUC '10.

[37]  Hans-Peter Kriegel,et al.  Factorizing YAGO: scalable machine learning for linked data , 2012, WWW.

[38]  Filippo Menczer,et al.  Hoaxy: A Platform for Tracking Online Misinformation , 2016, WWW.

[39]  Filippo Menczer,et al.  The rise of social bots , 2014, Commun. ACM.

[40]  Barbara Poblete,et al.  Information credibility on twitter , 2011, WWW.

[41]  Kyomin Jung,et al.  Prominent Features of Rumor Propagation in Online Social Media , 2013, 2013 IEEE 13th International Conference on Data Mining.

[42]  Pierre Vandergheynst,et al.  Geometric Deep Learning: Going beyond Euclidean data , 2016, IEEE Signal Process. Mag..

[43]  Issa Traoré,et al.  Detection of Online Fake News Using N-Gram Analysis and Machine Learning Techniques , 2017, ISDDC.

[44]  Jennifer Widom,et al.  Swoosh: a generic approach to entity resolution , 2008, The VLDB Journal.

[45]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[46]  Huan Liu,et al.  Tracing Fake-News Footprints: Characterizing Social Media Messages by How They Propagate , 2018, WSDM.

[47]  Gerhard Weikum,et al.  YAGO2: A Spatially and Temporally Enhanced Knowledge Base from Wikipedia: Extended Abstract , 2013, IJCAI.

[48]  Yongdong Zhang,et al.  Multimodal Fusion with Recurrent Neural Networks for Rumor Detection on Microblogs , 2017, ACM Multimedia.

[49]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[50]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[51]  Daniel F. Stone,et al.  Media Bias in the Marketplace: Theory , 2014 .

[52]  Gerhard Weikum What Computers Should Know, Shouldn't Know, and Shouldn't Believe , 2017, WWW.

[53]  Yimin Chen,et al.  Automatic deception detection: Methods for finding fake news , 2015, ASIST.

[54]  Yimin Chen,et al.  Misleading Online Content: Recognizing Clickbait as "False News" , 2015, WMDD@ICMI.

[55]  Qiaozhu Mei,et al.  Enquiring Minds: Early Detection of Rumors in Social Media from Enquiry Posts , 2015, WWW.

[56]  R. Nickerson Confirmation Bias: A Ubiquitous Phenomenon in Many Guises , 1998 .

[57]  Huan Liu,et al.  Deep Headline Generation for Clickbait Detection , 2018, 2018 IEEE International Conference on Data Mining (ICDM).

[58]  Emilio Ferrara,et al.  Social Bots Distort the 2016 US Presidential Election Online Discussion , 2016, First Monday.

[59]  Pankaj K. Agarwal,et al.  Toward Computational Fact-Checking , 2014, Proc. VLDB Endow..

[60]  Huan Liu,et al.  Understanding User Profiles on Social Media for Fake News Detection , 2018, 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR).

[61]  Michael S. Bernstein,et al.  Anyone Can Become a Troll: Causes of Trolling Behavior in Online Discussions , 2017, CSCW.

[62]  Wei Gao,et al.  Detect Rumors Using Time Series of Social Context Information on Microblogging Websites , 2015, CIKM.

[63]  Xian-Sheng Hua,et al.  Towards a Relevant and Diverse Search of Social Images , 2010, IEEE Transactions on Multimedia.

[64]  Victoria L. Rubin,et al.  Truth and deception at the rhetorical structure level , 2015, J. Assoc. Inf. Sci. Technol..

[65]  Gerhard Weikum,et al.  DeClarE: Debunking Fake News and False Claims using Evidence-Aware Deep Learning , 2018, EMNLP.

[66]  Evgeniy Gabrilovich,et al.  A Review of Relational Machine Learning for Knowledge Graphs , 2015, Proceedings of the IEEE.

[67]  H. Tajfel,et al.  The Social Identity Theory of Intergroup Behavior. , 2004 .

[68]  Emilio Ferrara,et al.  Quantifying the Effect of Sentiment on Information Diffusion in Social Media , 2015, PeerJ Comput. Sci..

[69]  Filippo Menczer,et al.  Finding Streams in Knowledge Graphs to Support Fact Checking , 2017, 2017 IEEE International Conference on Data Mining (ICDM).

[70]  L RubinVictoria,et al.  Truth and deception at the rhetorical structure level , 2015 .

[71]  Rachel Greenstadt,et al.  Detecting Hoaxes, Frauds, and Deception in Writing Style Online , 2012, 2012 IEEE Symposium on Security and Privacy.

[72]  Huan Liu,et al.  Deep learning for feature representation , 2018 .

[73]  Jintao Li,et al.  Rumor Detection with Hierarchical Social Attention Network , 2018, CIKM.

[74]  Reza Zafarani,et al.  Fake News: Fundamental Theories, Detection Strategies and Challenges , 2019, WSDM.

[75]  Panagiotis Takis Metaxas,et al.  The Fake News Spreading Plague: Was it Preventable? , 2017, WebSci.

[76]  Krishna P. Gummadi,et al.  Quantifying Search Bias: Investigating Sources of Bias for Political Searches in Social Media , 2017, CSCW.

[77]  R. Zajonc Attitudinal effects of mere exposure. , 1968 .

[78]  Wei Zhang,et al.  From Data Fusion to Knowledge Fusion , 2014, Proc. VLDB Endow..

[79]  Guido Caldarelli,et al.  Echo Chambers: Emotional Contagion and Group Polarization on Facebook , 2016, Scientific Reports.

[80]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[81]  Robert B. Zajonc The Construction of Preference: Mere Exposure: A Gateway to the Subliminal , 2006 .

[82]  Hugo Mercier,et al.  How Gullible are We? A Review of the Evidence from Psychology and Social Science , 2017 .

[83]  Wei Gao,et al.  Detecting Rumors from Microblogs with Recurrent Neural Networks , 2016, IJCAI.

[84]  Norbert Schwarz,et al.  Making the Truth Stick & the Myths Fade: Lessons from Cognitive Psychology , 2016, Behavioral Science & Policy.

[85]  M. Cha,et al.  Rumor Detection over Varying Time Windows , 2017, PloS one.

[86]  Tim Weninger,et al.  Fact Checking in Heterogeneous Information Networks , 2016, WWW.

[87]  Wei Gao,et al.  Detect Rumors on Twitter by Promoting Information Campaigns with Generative Adversarial Learning , 2019, WWW.

[88]  Mingzhe Wang,et al.  LINE: Large-scale Information Network Embedding , 2015, WWW.

[89]  He Jiang,et al.  Combating Fake News , 2019, ACM Trans. Intell. Syst. Technol..

[90]  Gerhard Weikum,et al.  Leveraging Joint Interactions for Credibility Analysis in News Communities , 2015, CIKM.

[91]  Sinan Aral,et al.  The spread of true and false news online , 2018, Science.

[92]  Bernhard Schölkopf,et al.  Leveraging the Crowd to Detect and Reduce the Spread of Fake News and Misinformation , 2017, WSDM.

[93]  Nikos D. Sidiropoulos,et al.  Co-clustering as multilinear decomposition with sparse latent factors , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[94]  Evangelos E. Papalexakis,et al.  Semi-supervised Content-Based Detection of Misinformation via Tensor Embeddings , 2018, 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[95]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[96]  Suhang Wang,et al.  Fake News Detection on Social Media: A Data Mining Perspective , 2017, SKDD.

[97]  Luis Mateus Rocha,et al.  Correction: Computational Fact Checking from Knowledge Networks , 2015, PloS one.

[98]  Huan Liu,et al.  Unsupervised sentiment analysis with emotional signals , 2013, WWW.

[99]  Erhard Rahm,et al.  Frameworks for entity matching: A comparison , 2010, Data Knowl. Eng..

[100]  G. Caldarelli,et al.  The spreading of misinformation online , 2016, Proceedings of the National Academy of Sciences.

[101]  Sandya Mannarswamy,et al.  CIMTDetect: A Community Infused Matrix-Tensor Coupled Factorization Based Method for Fake News Detection , 2018, 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[102]  Claire Cardie,et al.  Annotating Expressions of Opinions and Emotions in Language , 2005, Lang. Resour. Evaluation.

[103]  A. Vrij Criteria-Based Content Analysis: A Qualitative Review of the First 37 Studies. , 2005 .

[104]  Anja Gruenheid,et al.  Investigating Rumor News Using Agreement-Aware Search , 2018, CIKM.

[105]  Fenglong Ma,et al.  EANN: Event Adversarial Neural Networks for Multi-Modal Fake News Detection , 2018, KDD.

[106]  Margaret L. Kern,et al.  Personality, Gender, and Age in the Language of Social Media: The Open-Vocabulary Approach , 2013, PloS one.