Fragility Analysis of Base-Isolated Liquid Storage Tanks under Random Sinusoidal Base Excitation Using Generalized Polynomial Chaos Expansion–Based Simulation

AbstractGeneralized polynomial chaos (gPC) expansion–based simulation technique is used to investigate the influence of input parameter uncertainty, on peak response quantities and fragility curves of base-isolated liquid storage tanks. Unidirectional horizontal sinusoidal base excitation is considered to develop the fragility curves for the base-isolated liquid storage tanks. Extensively used laminated rubber bearing (LRB), with linear force-deformation behavior, is considered as the isolation system. The liquid storage tank is modeled using a widely accepted lumped mass model. The failure of the liquid storage tank is defined corresponding to the elastic buckling of the tank wall. The uncertainties are considered in the isolator parameters and in the base excitation. Considerable difference in the peak response estimation is observed when the input parameters are represented using different probability distributions, especially when the uncertainties are higher. It is also observed that when the uncerta...

[1]  Steffen Marburg,et al.  Stochastic analysis of base-isolated liquid storage tanks with uncertain isolator parameters under random excitation , 2013 .

[2]  C. Manohar,et al.  Reliability analysis of randomly vibrating structures with parameter uncertainties , 2006 .

[3]  Sudib K. Mishra,et al.  Performance of a Base-Isolated Building with System Parameter Uncertainty Subjected to a Stochastic Earthquake , 2013 .

[4]  Michael J. O'Rourke,et al.  Seismic Fragility Curves for On-Grade Steel Tanks , 2000 .

[5]  Takashi Nagata,et al.  An evaluation method for elastic-plastic buckling of cylindrical shells under shear forces , 1995 .

[6]  Sajal K. Deb,et al.  Seismic base isolation : An overview , 2004 .

[7]  R. Ghanem,et al.  Polynomial Chaos in Stochastic Finite Elements , 1990 .

[8]  Vasant Matsagar,et al.  Influence of isolator characteristics on the response of base-isolated structures , 2004 .

[9]  R. S. Jangid,et al.  Seismic response of liquid storage tanks isolated by sliding bearings , 2002 .

[10]  Ronald L. Mayes,et al.  Seismic Isolation: History, Application, and Performance—A World View , 1990 .

[11]  S. Saha,et al.  Reliability of Base-Isolated Liquid Storage Tanks under Horizontal Base Excitation , 2015 .

[12]  Raouf A. Ibrahim,et al.  Recent advances in nonlinear passive vibration isolators , 2008 .

[13]  Ernesto Salzano,et al.  Seismic risk of atmospheric storage tanks in the framework of quantitative risk analysis , 2003 .

[14]  Praveen K. Malhotra,et al.  METHOD FOR SEISMIC BASE ISOLATION OF LIQUID-STORAGE TANKS. TECHNICAL NOTE , 1997 .

[15]  Steffen Marburg,et al.  UNCERTAINTY QUANTIFICATION IN STOCHASTIC SYSTEMS USING POLYNOMIAL CHAOS EXPANSION , 2010 .

[16]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[17]  G. Schuëller A state-of-the-art report on computational stochastic mechanics , 1997 .

[18]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[19]  Achintya Haldar,et al.  Seismic reliability of non-linear frames with PR connections using systematic RSM , 2002 .

[20]  Reginald DesRoches,et al.  Seismic fragility of typical bridges in moderate seismic zones , 2004 .

[21]  Gaetano Manfredi,et al.  FRAGILITY OF STANDARD INDUSTRIAL STRUCTURES BY A RESPONSE SURFACE BASED METHOD , 2004 .

[22]  A. M. Prasad,et al.  Development of fragility curves using high‐dimensional model representation , 2013 .

[23]  Reginald DesRoches,et al.  Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios , 2008 .

[24]  Vasant Matsagar,et al.  Seismic fragility of base-isolated industrial tanks , 2014 .

[25]  Moon Kyum Kim,et al.  Seismic analysis of base-isolated liquid storage tanks using the BE–FE–BE coupling technique , 2002 .

[26]  Vasant Matsagar,et al.  Earthquake Response of Base-Isolated Liquid Storage Tanks for Different Isolator Models , 2014 .

[27]  Medhat A. Haroun,et al.  Earthquake Response of Deformable Liquid Storage Tanks , 1981 .

[28]  Petros Komodromos,et al.  Assessing the suitability of equivalent linear elastic analysis of seismically isolated multi-storey buildings , 2011 .

[29]  K. Sepahvand Uncertainty quantification in stochastic forward and inverse vibration problems using generalized polynomial chaos expansion , 2009 .

[30]  Bijan Kumar Roy,et al.  Reliability-based-design-optimization of base isolated buildings considering stochastic system parameters subjected to random earthquakes , 2013 .

[31]  R. S. Jangid,et al.  Seismic behaviour of base-isolated buildings : a state-of-the-art review , 1995 .

[32]  Chu V. Mai,et al.  Computing seismic fragility curves using polynomial chaos expansions , 2013 .

[33]  James M. Kelly,et al.  Aseismic base isolation: review and bibliography , 1986 .

[34]  Vasant Matsagar,et al.  STOCHASTIC SEISMIC RESPONSE OF BASE-ISOLATED BUILDINGS , 2013 .