The article contains sections titled:
1. Introduction
2. Dimensional Analysis
2.1. The Fundamental Principle
2.2. What Is a Dimension?
2.3. What Is a Physical Quantity?
2.4. Base and Derived Quantities, Dimensional Constants
2.5. Dimensional Systems
2.6. Dimensional Homogeneity of a Physical Content
2.7. The Pi Theorem
3. The Determination of a Pi Set by Matrix Transformation
3.1. The Establishment of a Relevance List of a Problem
3.2. Determination of the Characteristic Geometric Parameter
3.3. Constructing and Solving of the Dimensional Matrix
3.4. Determination of the Process Characteristics
4. Fundamentals of the Theory of Models and Scale-Up
4.1. Theory of Models
4.2. Model Experiments and Scale-Up
5. Further Procedures To Establish a Relevance List
5.1. Consideration of the Acceleration Due to Gravity g
5.2. Introduction of Intermediate Quantities
5.3. Scale-up Procedure at Unavailability of Model Material Systems
5.4. Partial Similarity
6. Short Summary of the Essentials of the Dimensional Analysis and Scale-Up
6.1. Advantages of Dimensional Analysis
6.2. Area of Applicability of Dimensional Analysis
6.3. Experimental Methods for Scale-Up
6.4. Carrying Out Experiments under Change of Scales
7. Treatment of Variable Physical Properties by Dimensional Analysis
7.1. Dimensionless Representation of the Material Function µ(T)
7.2. Standard Representation of Particle Strength σ of Different Materials in Dependence on Particle Diameter dp
7.3. Pi Set for Variable Physical Properties
7.4. Material Function in Non-Newtonian Liquids
7.4.1. Pseudoplastic Flow Behavior
7.4.2. Viscoelastic Flow Behavior
7.5. Pi Space in Processes with Non-Newtonian Fluids
8. Dimensional Analytical Treatment of Heat-Transfer Processes
9. Dimensional Analytical Treatment of Mass-Transfer Processes
9.1. Dimensional Analysis of Mass Transfer in the System G/L
9.2. Dimensional Analysis of Mass Transfer in the System S/L
[1]
M. Zlokarnik.
Design and scale-up of mechanical foam breakers
,
1986
.
[2]
M. Zlokarnik.
Auslegung von Hohlrührern zur Flüssigkeitsbegasung. Ermittlung des erreichbaren Stoff- und Wärmeaustausches
,
1966
.
[3]
M. Zlokarnik.
Sorption characteristics for gas-liquid contacting in mixing vessels
,
1978
.
[4]
Hans-Jürgen Henzler.
Rheologische Stoffeigenschaften – Erklärung, Messung, Erfassung und Bedeutung
,
1988
.
[5]
M. Zlokarnik,et al.
Optimieren von Rührern für eine maximale Ableitung von Reaktionswärme
,
1972
.
[6]
Guillaume Delaplace,et al.
Experimental and CFD Simulation of Heat Transfer to Highly Viscous Fluids in an Agitated Vessel Equipped With a non Standard Helical Ribbon Impeller
,
2001
.
[7]
A. W. Hixson,et al.
Agitation. Mass Transfer Coefficients in Liquid-Solid Agitation Systems
,
1941
.
[8]
M. Zlokarnik.
Auslegung und Dimensionierung eines mechanischen Schaumzerstörers
,
1984
.
[9]
G. Böhme,et al.
Consistent scale-up procedure for the power consumption in agitated non-newtonian fluids
,
1988
.
[10]
H. Judat.
Gas/Liquid Mass Transfer in Stirred Vessels-Critical Review
,
1982
.
[11]
Juri Pawlowski,et al.
Die Ähnlichkeitstheorie in der physikalisch-technischen Forschung
,
1971
.