On Fractional Lévy Processes: Tempering, Sample Path Properties and Stochastic Integration

We define two new classes of stochastic processes, called tempered fractional Lévy process of the first and second kinds (TFLP and TFLP II , respectively). TFLP and TFLP II make up very broad finite-variance, generally non-Gaussian families of transient anomalous diffusion models that are constructed by exponentially tempering the power law kernel in the moving average representation of a fractional Lévy process. Accordingly, the increment processes of TFLP and TFLP II display semi-long range dependence. We establish the sample path properties of TFLP and TFLP II . We further use a flexible framework of tempered fractional derivatives and integrals to develop the theory of stochastic integration with respect to TFLP and TFLP II , which may not be semimartingales depending on the value of the memory parameter and choice of marginal distribution.

[1]  Geoffrey Ingram Taylor,et al.  Diffusion by Continuous Movements , 1922 .

[2]  A. N. Kolmogorov Equations of turbulent motion in an incompressible fluid , 1941 .

[3]  T. Kármán Progress in the Statistical Theory of Turbulence , 1948 .

[4]  A. Davenport The spectrum of horizontal gustiness near the ground in high winds , 1961 .

[5]  Leonard Topper,et al.  Turbulence : classic papers on statistical theory , 1961 .

[6]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[7]  B. Mandelbrot Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier , 1974, Journal of Fluid Mechanics.

[8]  M. Taqqu Weak convergence to fractional brownian motion and to the rosenblatt process , 1975, Advances in Applied Probability.

[9]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[10]  R. Dobrushin,et al.  Non-central limit theorems for non-linear functional of Gaussian fields , 1979 .

[11]  O. Barndorff-Nielsen,et al.  Models for non-Gaussian variation, with applications to turbulence , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  M. Taqqu Convergence of integrated processes of arbitrary Hermite rank , 1979 .

[13]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[14]  David J. Norton,et al.  Mobile Offshore Platform Wind Loads , 1981 .

[15]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[16]  J. Rosínski On Path Properties of Certain Infinitely Divisible Processes. , 1989 .

[17]  O. E. Barndorff-Nielsen,et al.  Wind shear and hyperbolic distributions , 1989 .

[18]  B. Rajput,et al.  Spectral representations of infinitely divisible processes , 1989 .

[19]  P. Protter Stochastic Differential Equations , 1990 .

[20]  Ahsan Kareem,et al.  ARMA systems in wind engineering , 1990 .

[21]  O. E. Barndorff-Nielsen,et al.  Parametric modelling of turbulence , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[22]  Patrick Flandrin,et al.  Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[23]  Gregory W. Wornell,et al.  Estimation of fractal signals from noisy measurements using wavelets , 1992, IEEE Trans. Signal Process..

[24]  Jennifer L. R. Jensen,et al.  A statistical model for the streamwise component of a turbulent velocity field , 1993 .

[25]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[26]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[27]  Stanley,et al.  Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight. , 1994, Physical review letters.

[28]  Praveen Kumar,et al.  Wavelets in Geophysics , 1994 .

[29]  P. Blaesild,et al.  Hyperbolic Distributed Wind, Sea-Level and Wave Data , 1996 .

[30]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[31]  O. Barndorff-Nielsen Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling , 1997 .

[32]  Walter Willinger,et al.  Proof of a fundamental result in self-similar traffic modeling , 1997, CCRV.

[33]  L. Amaral,et al.  Multifractality in human heartbeat dynamics , 1998, Nature.

[34]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[35]  R. Leipus,et al.  STATIONARY ARCH MODELS: DEPENDENCE STRUCTURE AND CENTRAL LIMIT THEOREM , 2000, Econometric Theory.

[36]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[37]  M. Taqqu,et al.  Integration questions related to fractional Brownian motion , 2000 .

[38]  A. Benassi,et al.  Identification and properties of real harmonizable fractional Lévy motions , 2002 .

[39]  Weicheng Cui,et al.  A state-of-the-art review on fatigue life prediction methods for metal structures , 2002 .

[40]  Fredrik T. Rantakyrö,et al.  ALMA Memo No. 497 ANALYSIS OF WIND DATA GATHERED AT CHAJNANTOR , 2004 .

[41]  Patrick Cheridito,et al.  Gaussian moving averages, semimartingales and option pricing , 2004 .

[42]  Ralf Metzler,et al.  Natural cutoff in Lévy flights caused by dissipative nonlinearity. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Wojbor A. Woyczyński,et al.  Models of anomalous diffusion: the subdiffusive case , 2005 .

[44]  Peter J. Brockwell,et al.  Lévy-driven and fractionally integrated ARMA processes with continuous time parameter , 2005 .

[45]  T. Marquardt Fractional Lévy Processes, CARMA Processes and Related Topics , 2006 .

[46]  Kolmogorov and the Turbulence , 2006 .

[47]  T. Marquardt Fractional Lévy processes with an application to long memory moving average processes , 2006 .

[48]  T. Marquardt Fractional Levy processes with an , 2006 .

[49]  Jean-Michel Loubes,et al.  Hurst exponent estimation of Fractional Lévy Motion , 2007 .

[50]  J. Rosínski Tempering stable processes , 2007 .

[51]  Michael J Saxton,et al.  A biological interpretation of transient anomalous subdiffusion. I. Qualitative model. , 2007, Biophysical journal.

[52]  Á. Cartea,et al.  Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  M. Meerschaert,et al.  Tempered anomalous diffusion in heterogeneous systems , 2008 .

[54]  K. Weron,et al.  Diffusion and relaxation controlled by tempered alpha-stable processes. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  Christian Bender,et al.  Stochastic calculus for convoluted L\'{e}vy processes , 2008 .

[56]  Ole E. Barndorff-Nielsen,et al.  Time Change, Volatility, and Turbulence , 2008 .

[57]  Eric Moulines,et al.  A wavelet whittle estimator of the memory parameter of a nonstationary Gaussian time series , 2008 .

[58]  Igor M. Sokolov,et al.  Statistics and the single molecule , 2008 .

[59]  S. C. Kou,et al.  Stochastic modeling in nanoscale biophysics: Subdiffusion within proteins , 2008, 0807.3910.

[60]  M. Saxton A biological interpretation of transient anomalous subdiffusion. II. Reaction kinetics. , 2008, Biophysical journal.

[61]  M. Gregory Forest,et al.  Time-Domain Methods for Diffusive Transport in Soft Matter , 2009, SIAM J. Appl. Math..

[62]  Von Kármán's Work: The Later Years (1952 to 1963) and Legacy , 2009 .

[63]  J. Pedersen,et al.  Lévy driven moving averages and semimartingales , 2009 .

[64]  Ole E. Barndorff-Nielsen,et al.  Brownian Semistationary Processes and Volatility/Intermittency , 2009 .

[65]  Jing-Jong Jang,et al.  Analysis of Maximum Wind force for Offshore Structure Design , 2009, Journal of Marine Science and Technology.

[66]  Marcin Magdziarz,et al.  Fractional Fokker-Planck equation with tempered α-stable waiting times: langevin picture and computer simulation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  Mark M. Meerschaert,et al.  Tempered stable Lévy motion and transient super-diffusion , 2010, J. Comput. Appl. Math..

[68]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[69]  Nicolae Suciu,et al.  Spatially inhomogeneous transition probabilities as memory effects for diffusion in statistically homogeneous random velocity fields. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[70]  Jennifer L. Sinclair,et al.  Generalized tempered stable processes , 2010 .

[71]  S. Rachev,et al.  Tempered stable distributions and processes in finance: numerical analysis , 2010 .

[72]  Marcin Magdziarz,et al.  Ergodic properties of anomalous diffusion processes , 2011 .

[73]  M. Taqqu,et al.  Wavelet estimation of the long memory parameter for Hermite polynomial of Gaussian processes , 2011, 1105.1011.

[74]  M. Meerschaert,et al.  Stochastic Models for Fractional Calculus , 2011 .

[75]  James Cunningham Time for Change , 2011, SIGGRAPH '11.

[76]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[77]  Reiichiro Kawai,et al.  Infinite Variation Tempered Stable Ornstein–Uhlenbeck Processes with Discrete Observations , 2010, Commun. Stat. Simul. Comput..

[78]  Julius S. Bendat,et al.  Stationary Random Processes , 2012 .

[79]  Scott A. McKinley,et al.  Statistical challenges in microrheology , 2012, 1201.5984.

[80]  D. Grebenkov,et al.  Hydrodynamic and subdiffusive motion of tracers in a viscoelastic medium. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[81]  Jan Beran,et al.  Long-Memory Processes: Probabilistic Properties and Statistical Methods , 2013 .

[82]  Michael Shats,et al.  Lagrangian scale of particle dispersion in turbulence , 2013, Nature Communications.

[83]  Stefan Tappe,et al.  Tempered stable distributions and processes , 2013, 1907.05141.

[84]  M. Meerschaert,et al.  Tempered fractional Brownian motion , 2013 .

[85]  Li Wang,et al.  Corrigendum: Ultrafast universal quantum control of a quantum-dot charge qubit using Landau–Zener–Stückelberg interference , 2013, Nature Communications.

[86]  Jean-Marc Bardet,et al.  Asymptotic behavior of the Whittle estimator for the increments of a Rosenblatt process , 2013, J. Multivar. Anal..

[87]  Patrice Abry,et al.  Interplay between functional connectivity and scale-free dynamics in intrinsic fMRI networks , 2014, NeuroImage.

[88]  Taylor particle dispersion during transition to fully developed two-dimensional turbulence. , 2014, Physical review letters.

[89]  Mark M Meerschaert,et al.  STOCHASTIC INTEGRATION FOR TEMPERED FRACTIONAL BROWNIAN MOTION. , 2014, Stochastic processes and their applications.

[90]  Mark M. Meerschaert,et al.  Tempered fractional time series model for turbulence in geophysical flows , 2014 .

[91]  Maximal Inequalities for Fractional Lévy and Related Processes , 2014, 1408.1257.

[92]  Xinsheng Zhang,et al.  A Least Squares Estimator for Lévy-driven Moving Averages Based on Discrete Time Observations , 2015 .

[93]  H. Kantz,et al.  Diffusion and Fokker-Planck-Smoluchowski Equations with Generalized Memory Kernel , 2015 .

[94]  Inhibition of wave-driven two-dimensional turbulence by viscoelastic films of proteins. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[95]  F. Sabzikar,et al.  Tempered Hermite process , 2015, 1601.01108.

[96]  Generalized fractional Lévy processes with fractional Brownian motion limit , 2015, Advances in Applied Probability.

[97]  O. Barndorff-Nielsen Assessing Gamma kernels and BSS/LSS processes , 2016 .

[98]  H. Fink Conditional Distributions of Mandelbrot–van ness Fractional LÉVY Processes and Continuous‐Time ARMA–GARCH‐Type Models with Long Memory , 2016 .

[99]  J. Kurths,et al.  The Switch in a Genetic Toggle System with Lévy Noise , 2016, Scientific Reports.

[100]  E. Barkai,et al.  Tempered fractional Feynman-Kac equation: Theory and examples. , 2016, Physical review. E.

[101]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[102]  Y. Chen,et al.  Bifurcation dynamics of the tempered fractional Langevin equation. , 2016, Chaos.

[103]  Localization and Ballistic Diffusion for the Tempered Fractional Brownian–Langevin Motion , 2017, 1704.03312.

[104]  L. Chevillard Regularized fractional Ornstein-Uhlenbeck processes and their relevance to the modeling of fluid turbulence. , 2017, Physical review. E.

[105]  Holger Kantz,et al.  Generalized Langevin equation with tempered memory kernel , 2017 .

[106]  Vladas Pipiras,et al.  Long-Range Dependence and Self-Similarity , 2017 .

[107]  Tempered fractional Brownian and stable motions of second kind , 2017, 1702.07258.

[108]  Gustavo Didier,et al.  Fluid heterogeneity detection based on the asymptotic distribution of the time-averaged mean squared displacement in single particle tracking experiments , 2018, Journal of physics. A, Mathematical and theoretical.

[109]  B. Cooper Boniece,et al.  Tempered Fractional Brownian Motion: Wavelet Estimation and Modeling of Turbulence in Geophysical Flows , 2018, 2018 IEEE Statistical Signal Processing Workshop (SSP).

[110]  P. Phillips,et al.  Asymptotic Theory for Near Integrated Process Driven by Tempered Linear Process , 2018, Journal of Econometrics.

[111]  Trifce Sandev,et al.  Crossover from anomalous to normal diffusion: truncated power-law noise correlations and applications to dynamics in lipid bilayers , 2018, New Journal of Physics.

[112]  W. Deng,et al.  Resonant behavior of the generalized Langevin system with tempered Mittag–Leffler memory kernel , 2018, 1802.02211.

[113]  G. Didier,et al.  Tempered fractional Brownian motion: Wavelet estimation, modeling and testing , 2018, Applied and Computational Harmonic Analysis.

[114]  P. Phillips,et al.  Asymptotic theory for near integrated processes driven by tempered linear processes , 2020, Journal of Econometrics.